| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiininc2.f | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 2 |  | meaiininc2.p | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 3 |  | meaiininc2.m | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
						
							| 4 |  | meaiininc2.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 5 |  | meaiininc2.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 6 |  | meaiininc2.e | ⊢ ( 𝜑  →  𝐸 : 𝑍 ⟶ dom  𝑀 ) | 
						
							| 7 |  | meaiininc2.i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ ( 𝑛  +  1 ) )  ⊆  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 8 |  | meaiininc2.k | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 9 |  | meaiininc2.s | ⊢ 𝑆  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑘 𝑆  ⇝  ( 𝑀 ‘ ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑛 𝑘  ∈  𝑍 | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ | 
						
							| 13 | 1 11 12 | nf3an | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑘  ∈  𝑍  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 14 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ )  →  𝑀  ∈  Meas ) | 
						
							| 15 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ )  →  𝑁  ∈  ℤ ) | 
						
							| 16 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ )  →  𝐸 : 𝑍 ⟶ dom  𝑀 ) | 
						
							| 17 | 7 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ ( 𝑛  +  1 ) )  ⊆  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 18 |  | id | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  𝑍 ) | 
						
							| 19 | 18 5 | eleqtrdi | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 20 | 19 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 21 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 22 | 13 14 15 5 16 17 20 21 9 | meaiininc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ )  →  𝑆  ⇝  ( 𝑀 ‘ ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 23 | 22 | 3exp | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑍  →  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ  →  𝑆  ⇝  ( 𝑀 ‘ ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 24 | 2 10 23 | rexlimd | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ∈  ℝ  →  𝑆  ⇝  ( 𝑀 ‘ ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 25 | 8 24 | mpd | ⊢ ( 𝜑  →  𝑆  ⇝  ( 𝑀 ‘ ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |