| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climresmpt.z |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
climresmpt.f |
|- F = ( x e. Z |-> A ) |
| 3 |
|
climresmpt.n |
|- ( ph -> N e. Z ) |
| 4 |
|
climresmpt.g |
|- G = ( x e. ( ZZ>= ` N ) |-> A ) |
| 5 |
2
|
reseq1i |
|- ( F |` ( ZZ>= ` N ) ) = ( ( x e. Z |-> A ) |` ( ZZ>= ` N ) ) |
| 6 |
5
|
a1i |
|- ( ph -> ( F |` ( ZZ>= ` N ) ) = ( ( x e. Z |-> A ) |` ( ZZ>= ` N ) ) ) |
| 7 |
3 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 8 |
|
uzss |
|- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
| 9 |
7 8
|
syl |
|- ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
| 10 |
9 1
|
sseqtrrdi |
|- ( ph -> ( ZZ>= ` N ) C_ Z ) |
| 11 |
|
resmpt |
|- ( ( ZZ>= ` N ) C_ Z -> ( ( x e. Z |-> A ) |` ( ZZ>= ` N ) ) = ( x e. ( ZZ>= ` N ) |-> A ) ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( ( x e. Z |-> A ) |` ( ZZ>= ` N ) ) = ( x e. ( ZZ>= ` N ) |-> A ) ) |
| 13 |
4
|
eqcomi |
|- ( x e. ( ZZ>= ` N ) |-> A ) = G |
| 14 |
13
|
a1i |
|- ( ph -> ( x e. ( ZZ>= ` N ) |-> A ) = G ) |
| 15 |
6 12 14
|
3eqtrrd |
|- ( ph -> G = ( F |` ( ZZ>= ` N ) ) ) |
| 16 |
15
|
breq1d |
|- ( ph -> ( G ~~> B <-> ( F |` ( ZZ>= ` N ) ) ~~> B ) ) |
| 17 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 18 |
7 17
|
syl |
|- ( ph -> N e. ZZ ) |
| 19 |
1
|
fvexi |
|- Z e. _V |
| 20 |
19
|
mptex |
|- ( x e. Z |-> A ) e. _V |
| 21 |
20
|
a1i |
|- ( ph -> ( x e. Z |-> A ) e. _V ) |
| 22 |
2 21
|
eqeltrid |
|- ( ph -> F e. _V ) |
| 23 |
|
climres |
|- ( ( N e. ZZ /\ F e. _V ) -> ( ( F |` ( ZZ>= ` N ) ) ~~> B <-> F ~~> B ) ) |
| 24 |
18 22 23
|
syl2anc |
|- ( ph -> ( ( F |` ( ZZ>= ` N ) ) ~~> B <-> F ~~> B ) ) |
| 25 |
16 24
|
bitrd |
|- ( ph -> ( G ~~> B <-> F ~~> B ) ) |