Metamath Proof Explorer


Theorem climresmpt

Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses climresmpt.z Z=M
climresmpt.f F=xZA
climresmpt.n φNZ
climresmpt.g G=xNA
Assertion climresmpt φGBFB

Proof

Step Hyp Ref Expression
1 climresmpt.z Z=M
2 climresmpt.f F=xZA
3 climresmpt.n φNZ
4 climresmpt.g G=xNA
5 2 reseq1i FN=xZAN
6 5 a1i φFN=xZAN
7 3 1 eleqtrdi φNM
8 uzss NMNM
9 7 8 syl φNM
10 9 1 sseqtrrdi φNZ
11 resmpt NZxZAN=xNA
12 10 11 syl φxZAN=xNA
13 4 eqcomi xNA=G
14 13 a1i φxNA=G
15 6 12 14 3eqtrrd φG=FN
16 15 breq1d φGBFNB
17 eluzelz NMN
18 7 17 syl φN
19 1 fvexi ZV
20 19 mptex xZAV
21 20 a1i φxZAV
22 2 21 eqeltrid φFV
23 climres NFVFNBFB
24 18 22 23 syl2anc φFNBFB
25 16 24 bitrd φGBFB