Metamath Proof Explorer


Theorem climresmpt

Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses climresmpt.z Z = M
climresmpt.f F = x Z A
climresmpt.n φ N Z
climresmpt.g G = x N A
Assertion climresmpt φ G B F B

Proof

Step Hyp Ref Expression
1 climresmpt.z Z = M
2 climresmpt.f F = x Z A
3 climresmpt.n φ N Z
4 climresmpt.g G = x N A
5 2 reseq1i F N = x Z A N
6 5 a1i φ F N = x Z A N
7 3 1 eleqtrdi φ N M
8 uzss N M N M
9 7 8 syl φ N M
10 9 1 sseqtrrdi φ N Z
11 resmpt N Z x Z A N = x N A
12 10 11 syl φ x Z A N = x N A
13 4 eqcomi x N A = G
14 13 a1i φ x N A = G
15 6 12 14 3eqtrrd φ G = F N
16 15 breq1d φ G B F N B
17 eluzelz N M N
18 7 17 syl φ N
19 1 fvexi Z V
20 19 mptex x Z A V
21 20 a1i φ x Z A V
22 2 21 eqeltrid φ F V
23 climres N F V F N B F B
24 18 22 23 syl2anc φ F N B F B
25 16 24 bitrd φ G B F B