| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonicc.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
vonicc.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
| 3 |
|
vonicc.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
| 4 |
|
vonicc.i |
⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) |
| 5 |
|
vonicc.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
| 7 |
|
feq2 |
⊢ ( 𝑋 = ∅ → ( 𝐴 : 𝑋 ⟶ ℝ ↔ 𝐴 : ∅ ⟶ ℝ ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 : 𝑋 ⟶ ℝ ↔ 𝐴 : ∅ ⟶ ℝ ) ) |
| 9 |
6 8
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐴 : ∅ ⟶ ℝ ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐵 : 𝑋 ⟶ ℝ ) |
| 11 |
|
feq2 |
⊢ ( 𝑋 = ∅ → ( 𝐵 : 𝑋 ⟶ ℝ ↔ 𝐵 : ∅ ⟶ ℝ ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐵 : 𝑋 ⟶ ℝ ↔ 𝐵 : ∅ ⟶ ℝ ) ) |
| 13 |
10 12
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐵 : ∅ ⟶ ℝ ) |
| 14 |
5 9 13
|
hoidmv0val |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) = 0 ) |
| 15 |
14
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 0 = ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑋 = ∅ → ( voln ‘ 𝑋 ) = ( voln ‘ ∅ ) ) |
| 17 |
4
|
a1i |
⊢ ( 𝑋 = ∅ → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) |
| 18 |
|
ixpeq1 |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) |
| 19 |
17 18
|
eqtrd |
⊢ ( 𝑋 = ∅ → 𝐼 = X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) |
| 20 |
16 19
|
fveq12d |
⊢ ( 𝑋 = ∅ → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ ∅ ) ‘ X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ ∅ ) ‘ X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 22 |
|
0fi |
⊢ ∅ ∈ Fin |
| 23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ ∈ Fin ) |
| 24 |
|
eqid |
⊢ dom ( voln ‘ ∅ ) = dom ( voln ‘ ∅ ) |
| 25 |
23 24 9 13
|
iccvonmbl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ∈ dom ( voln ‘ ∅ ) ) |
| 26 |
25
|
von0val |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln ‘ ∅ ) ‘ X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) = 0 ) |
| 27 |
21 26
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = 0 ) |
| 28 |
|
fveq2 |
⊢ ( 𝑋 = ∅ → ( 𝐿 ‘ 𝑋 ) = ( 𝐿 ‘ ∅ ) ) |
| 29 |
28
|
oveqd |
⊢ ( 𝑋 = ∅ → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) ) |
| 31 |
15 27 30
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 32 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
| 34 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑋 ≠ ∅ ) |
| 35 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) |
| 36 |
34 35
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
| 37 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
| 38 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 39 |
|
volico2 |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = if ( ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ) |
| 40 |
37 38 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = if ( ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ) |
| 41 |
40
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = if ( ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ) |
| 42 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
| 43 |
42
|
iftrued |
⊢ ( ( ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ∧ 𝑘 ∈ 𝑋 ) → if ( ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 44 |
43
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → if ( ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 45 |
41 44
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 46 |
45
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ( 𝑘 ∈ 𝑋 → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 47 |
36 46
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 48 |
47
|
prodeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 49 |
48
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 50 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑗 ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑗 ) ) |
| 52 |
50 51
|
breq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ↔ ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) ) |
| 53 |
52
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ↔ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 54 |
53
|
biimpi |
⊢ ( ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) → ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 55 |
54
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 56 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝑋 ∈ Fin ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) → 𝑋 ∈ Fin ) |
| 58 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) → 𝐴 : 𝑋 ⟶ ℝ ) |
| 60 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝐵 : 𝑋 ⟶ ℝ ) |
| 61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) → 𝐵 : 𝑋 ⟶ ℝ ) |
| 62 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝑋 ≠ ∅ ) |
| 63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) → 𝑋 ≠ ∅ ) |
| 64 |
53 42
|
sylanbr |
⊢ ( ( ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
| 65 |
64
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐵 ‘ 𝑗 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 67 |
66
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) = ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) |
| 68 |
67
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) |
| 69 |
68
|
mpteq2i |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) ) |
| 70 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 1 / 𝑚 ) = ( 1 / 𝑛 ) ) |
| 71 |
70
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) = ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
| 72 |
71
|
mpteq2dv |
⊢ ( 𝑚 = 𝑛 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
| 73 |
72
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
| 74 |
69 73
|
eqtri |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
| 75 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑖 ) = ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ) |
| 76 |
75
|
fveq1d |
⊢ ( 𝑖 = 𝑛 → ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑖 ) ‘ 𝑘 ) = ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) ) |
| 77 |
76
|
oveq2d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑖 ) ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 78 |
77
|
ixpeq2dv |
⊢ ( 𝑖 = 𝑛 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑖 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 79 |
78
|
cbvmptv |
⊢ ( 𝑖 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑖 ) ‘ 𝑘 ) ) ) = ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 80 |
57 59 61 63 65 4 74 79
|
vonicclem2 |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 81 |
55 80
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 82 |
5 56 62 58 60
|
hoidmvn0val |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 84 |
49 81 83
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 85 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ 𝑋 ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ↔ ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
| 86 |
85
|
bicomi |
⊢ ( ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ 𝑋 ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
| 87 |
86
|
biimpi |
⊢ ( ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) → ∃ 𝑘 ∈ 𝑋 ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
| 88 |
87
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ∃ 𝑘 ∈ 𝑋 ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
| 89 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
| 90 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 91 |
37
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
| 92 |
90 91
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ( ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ↔ ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) ) |
| 93 |
89 92
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) |
| 94 |
93
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) ) |
| 95 |
94
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑋 ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) → ∃ 𝑘 ∈ 𝑋 ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ( ∃ 𝑘 ∈ 𝑋 ¬ ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) → ∃ 𝑘 ∈ 𝑋 ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) ) |
| 97 |
88 96
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ∃ 𝑘 ∈ 𝑋 ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) |
| 98 |
97
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ∃ 𝑘 ∈ 𝑋 ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) |
| 99 |
|
nfcv |
⊢ Ⅎ 𝑘 ( voln ‘ 𝑋 ) |
| 100 |
|
nfixp1 |
⊢ Ⅎ 𝑘 X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) |
| 101 |
4 100
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐼 |
| 102 |
99 101
|
nffv |
⊢ Ⅎ 𝑘 ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) |
| 103 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
| 104 |
|
nfcv |
⊢ Ⅎ 𝑘 Fin |
| 105 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ℝ ↑m 𝑥 ) |
| 106 |
|
nfv |
⊢ Ⅎ 𝑘 𝑥 = ∅ |
| 107 |
|
nfcv |
⊢ Ⅎ 𝑘 0 |
| 108 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
| 109 |
108
|
nfcprod1 |
⊢ Ⅎ 𝑘 ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
| 110 |
106 107 109
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
| 111 |
105 105 110
|
nfmpo |
⊢ Ⅎ 𝑘 ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) |
| 112 |
104 111
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 113 |
5 112
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐿 |
| 114 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑋 |
| 115 |
113 114
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐿 ‘ 𝑋 ) |
| 116 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
| 117 |
103 115 116
|
nfov |
⊢ Ⅎ 𝑘 ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) |
| 118 |
102 117
|
nfeq |
⊢ Ⅎ 𝑘 ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) |
| 119 |
1
|
vonmea |
⊢ ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas ) |
| 120 |
119
|
mea0 |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ ∅ ) = 0 ) |
| 121 |
120
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ ∅ ) = 0 ) |
| 122 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) |
| 123 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → 𝑘 ∈ 𝑋 ) |
| 124 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) |
| 125 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 126 |
125 37
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ) |
| 127 |
125 38
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
| 128 |
|
icc0 |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) → ( ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) = ∅ ↔ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) ) |
| 129 |
126 127 128
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) = ∅ ↔ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) ) |
| 130 |
129
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → ( ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) = ∅ ↔ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) ) |
| 131 |
124 130
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) = ∅ ) |
| 132 |
|
rspe |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) = ∅ ) → ∃ 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) = ∅ ) |
| 133 |
123 131 132
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → ∃ 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) = ∅ ) |
| 134 |
|
ixp0 |
⊢ ( ∃ 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) = ∅ → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) = ∅ ) |
| 135 |
133 134
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) = ∅ ) |
| 136 |
122 135
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → 𝐼 = ∅ ) |
| 137 |
136
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ 𝑋 ) ‘ ∅ ) ) |
| 138 |
|
ne0i |
⊢ ( 𝑘 ∈ 𝑋 → 𝑋 ≠ ∅ ) |
| 139 |
138
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑋 ≠ ∅ ) |
| 140 |
139 82
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 141 |
140
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 142 |
|
eleq1w |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ 𝑋 ↔ 𝑘 ∈ 𝑋 ) ) |
| 143 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 144 |
66 143
|
breq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ↔ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) ) |
| 145 |
142 144
|
3anbi23d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 146 |
145
|
imbi1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 0 ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 0 ) ) ) |
| 147 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) |
| 148 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) → 𝑋 ∈ Fin ) |
| 149 |
|
volicore |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 150 |
37 38 149
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 151 |
150
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 152 |
151
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 153 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) → 𝑗 ∈ 𝑋 ) |
| 154 |
50 51
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) |
| 155 |
154
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 156 |
155
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) ∧ 𝑘 = 𝑗 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 157 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑗 ) ∈ ℝ ) |
| 158 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
| 159 |
|
volico2 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) = if ( ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , 0 ) ) |
| 160 |
157 158 159
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) = if ( ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , 0 ) ) |
| 161 |
160
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) → ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) = if ( ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , 0 ) ) |
| 162 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) → ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) |
| 163 |
158 157
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ↔ ¬ ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) ) |
| 164 |
163
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) → ( ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ↔ ¬ ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) ) |
| 165 |
162 164
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) → ¬ ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 166 |
165
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) → if ( ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐵 ‘ 𝑗 ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , 0 ) = 0 ) |
| 167 |
161 166
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) → ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) = 0 ) |
| 168 |
167
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) ∧ 𝑘 = 𝑗 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) = 0 ) |
| 169 |
156 168
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) ∧ 𝑘 = 𝑗 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 0 ) |
| 170 |
147 148 152 153 169
|
fprodeq0g |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐴 ‘ 𝑗 ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 0 ) |
| 171 |
146 170
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 0 ) |
| 172 |
141 171
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = 0 ) |
| 173 |
121 137 172
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 174 |
173
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 → ( ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) ) ) |
| 175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( 𝑘 ∈ 𝑋 → ( ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) ) ) |
| 176 |
34 118 175
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑘 ∈ 𝑋 ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) ) |
| 177 |
176
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∃ 𝑘 ∈ 𝑋 ( 𝐵 ‘ 𝑘 ) < ( 𝐴 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 178 |
98 177
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 179 |
84 178
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 180 |
33 179
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 181 |
31 180
|
pm2.61dan |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |