| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonicc.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | vonicc.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 3 |  | vonicc.b | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 4 |  | vonicc.i | ⊢ 𝐼  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 5 |  | vonicc.l | ⊢ 𝐿  =  ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 6 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 7 |  | feq2 | ⊢ ( 𝑋  =  ∅  →  ( 𝐴 : 𝑋 ⟶ ℝ  ↔  𝐴 : ∅ ⟶ ℝ ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( 𝐴 : 𝑋 ⟶ ℝ  ↔  𝐴 : ∅ ⟶ ℝ ) ) | 
						
							| 9 | 6 8 | mpbid | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  𝐴 : ∅ ⟶ ℝ ) | 
						
							| 10 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 11 |  | feq2 | ⊢ ( 𝑋  =  ∅  →  ( 𝐵 : 𝑋 ⟶ ℝ  ↔  𝐵 : ∅ ⟶ ℝ ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( 𝐵 : 𝑋 ⟶ ℝ  ↔  𝐵 : ∅ ⟶ ℝ ) ) | 
						
							| 13 | 10 12 | mpbid | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  𝐵 : ∅ ⟶ ℝ ) | 
						
							| 14 | 5 9 13 | hoidmv0val | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 )  =  0 ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  0  =  ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑋  =  ∅  →  ( voln ‘ 𝑋 )  =  ( voln ‘ ∅ ) ) | 
						
							| 17 | 4 | a1i | ⊢ ( 𝑋  =  ∅  →  𝐼  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 18 |  | ixpeq1 | ⊢ ( 𝑋  =  ∅  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) )  =  X 𝑘  ∈  ∅ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 19 | 17 18 | eqtrd | ⊢ ( 𝑋  =  ∅  →  𝐼  =  X 𝑘  ∈  ∅ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 20 | 16 19 | fveq12d | ⊢ ( 𝑋  =  ∅  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( ( voln ‘ ∅ ) ‘ X 𝑘  ∈  ∅ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( ( voln ‘ ∅ ) ‘ X 𝑘  ∈  ∅ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 22 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∅  ∈  Fin ) | 
						
							| 24 |  | eqid | ⊢ dom  ( voln ‘ ∅ )  =  dom  ( voln ‘ ∅ ) | 
						
							| 25 | 23 24 9 13 | iccvonmbl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  X 𝑘  ∈  ∅ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) )  ∈  dom  ( voln ‘ ∅ ) ) | 
						
							| 26 | 25 | von0val | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( ( voln ‘ ∅ ) ‘ X 𝑘  ∈  ∅ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) )  =  0 ) | 
						
							| 27 | 21 26 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  0 ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑋  =  ∅  →  ( 𝐿 ‘ 𝑋 )  =  ( 𝐿 ‘ ∅ ) ) | 
						
							| 29 | 28 | oveqd | ⊢ ( 𝑋  =  ∅  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 )  =  ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 )  =  ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) ) | 
						
							| 31 | 15 27 30 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) | 
						
							| 32 |  | neqne | ⊢ ( ¬  𝑋  =  ∅  →  𝑋  ≠  ∅ ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  𝑋  ≠  ∅ ) | 
						
							| 34 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑋  ≠  ∅ ) | 
						
							| 35 |  | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) | 
						
							| 36 | 34 35 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 37 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 38 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 39 |  | volico2 | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑘 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  if ( ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ,  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 ) ) | 
						
							| 40 | 37 38 39 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  if ( ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ,  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 ) ) | 
						
							| 41 | 40 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  if ( ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ,  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 ) ) | 
						
							| 42 |  | rspa | ⊢ ( ( ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 43 | 42 | iftrued | ⊢ ( ( ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 )  ∧  𝑘  ∈  𝑋 )  →  if ( ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ,  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 44 | 43 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑋 )  →  if ( ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ,  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 45 | 41 44 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 46 | 45 | ex | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ( 𝑘  ∈  𝑋  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) ) | 
						
							| 47 | 36 46 | ralrimi | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ∀ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 48 | 47 | prodeq2d | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 49 | 48 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 51 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 52 | 50 51 | breq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 )  ↔  ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 53 | 52 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 )  ↔  ∀ 𝑗  ∈  𝑋 ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 54 | 53 | biimpi | ⊢ ( ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 )  →  ∀ 𝑗  ∈  𝑋 ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ∀ 𝑗  ∈  𝑋 ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 56 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝑋  ∈  Fin ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑗  ∈  𝑋 ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) )  →  𝑋  ∈  Fin ) | 
						
							| 58 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑗  ∈  𝑋 ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 60 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑗  ∈  𝑋 ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) )  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 62 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝑋  ≠  ∅ ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑗  ∈  𝑋 ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) )  →  𝑋  ≠  ∅ ) | 
						
							| 64 | 53 42 | sylanbr | ⊢ ( ( ∀ 𝑗  ∈  𝑋 ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 65 | 64 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑗  ∈  𝑋 ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 66 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐵 ‘ 𝑗 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 67 | 66 | oveq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) )  =  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) ) | 
						
							| 68 | 67 | cbvmptv | ⊢ ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) ) | 
						
							| 69 | 68 | mpteq2i | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 70 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 1  /  𝑚 )  =  ( 1  /  𝑛 ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑚 ) )  =  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 72 | 71 | mpteq2dv | ⊢ ( 𝑚  =  𝑛  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 73 | 72 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 74 | 69 73 | eqtri | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 75 |  | fveq2 | ⊢ ( 𝑖  =  𝑛  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) ) ) ‘ 𝑖 )  =  ( ( 𝑚  ∈  ℕ  ↦  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 76 | 75 | fveq1d | ⊢ ( 𝑖  =  𝑛  →  ( ( ( 𝑚  ∈  ℕ  ↦  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) ) ) ‘ 𝑖 ) ‘ 𝑘 )  =  ( ( ( 𝑚  ∈  ℕ  ↦  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) ) | 
						
							| 77 | 76 | oveq2d | ⊢ ( 𝑖  =  𝑛  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝑚  ∈  ℕ  ↦  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) ) ) ‘ 𝑖 ) ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝑚  ∈  ℕ  ↦  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 78 | 77 | ixpeq2dv | ⊢ ( 𝑖  =  𝑛  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝑚  ∈  ℕ  ↦  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) ) ) ‘ 𝑖 ) ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝑚  ∈  ℕ  ↦  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 79 | 78 | cbvmptv | ⊢ ( 𝑖  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝑚  ∈  ℕ  ↦  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) ) ) ‘ 𝑖 ) ‘ 𝑘 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝑚  ∈  ℕ  ↦  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  +  ( 1  /  𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 80 | 57 59 61 63 65 4 74 79 | vonicclem2 | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑗  ∈  𝑋 ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 81 | 55 80 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 82 | 5 56 62 58 60 | hoidmvn0val | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 84 | 49 81 83 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) | 
						
							| 85 |  | rexnal | ⊢ ( ∃ 𝑘  ∈  𝑋 ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 )  ↔  ¬  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 86 | 85 | bicomi | ⊢ ( ¬  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 )  ↔  ∃ 𝑘  ∈  𝑋 ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 87 | 86 | biimpi | ⊢ ( ¬  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 )  →  ∃ 𝑘  ∈  𝑋 ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 88 | 87 | adantl | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ∃ 𝑘  ∈  𝑋 ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 89 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 90 | 38 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 91 | 37 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 92 | 90 91 | ltnled | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 )  ↔  ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 93 | 89 92 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 94 | 93 | ex | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 95 | 94 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  𝑋 ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 )  →  ∃ 𝑘  ∈  𝑋 ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ( ∃ 𝑘  ∈  𝑋 ¬  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 )  →  ∃ 𝑘  ∈  𝑋 ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 97 | 88 96 | mpd | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ∃ 𝑘  ∈  𝑋 ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 98 | 97 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ¬  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ∃ 𝑘  ∈  𝑋 ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 99 |  | nfcv | ⊢ Ⅎ 𝑘 ( voln ‘ 𝑋 ) | 
						
							| 100 |  | nfixp1 | ⊢ Ⅎ 𝑘 X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 101 | 4 100 | nfcxfr | ⊢ Ⅎ 𝑘 𝐼 | 
						
							| 102 | 99 101 | nffv | ⊢ Ⅎ 𝑘 ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) | 
						
							| 103 |  | nfcv | ⊢ Ⅎ 𝑘 𝐴 | 
						
							| 104 |  | nfcv | ⊢ Ⅎ 𝑘 Fin | 
						
							| 105 |  | nfcv | ⊢ Ⅎ 𝑘 ( ℝ  ↑m  𝑥 ) | 
						
							| 106 |  | nfv | ⊢ Ⅎ 𝑘 𝑥  =  ∅ | 
						
							| 107 |  | nfcv | ⊢ Ⅎ 𝑘 0 | 
						
							| 108 |  | nfcv | ⊢ Ⅎ 𝑘 𝑥 | 
						
							| 109 | 108 | nfcprod1 | ⊢ Ⅎ 𝑘 ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) | 
						
							| 110 | 106 107 109 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) | 
						
							| 111 | 105 105 110 | nfmpo | ⊢ Ⅎ 𝑘 ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) | 
						
							| 112 | 104 111 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 113 | 5 112 | nfcxfr | ⊢ Ⅎ 𝑘 𝐿 | 
						
							| 114 |  | nfcv | ⊢ Ⅎ 𝑘 𝑋 | 
						
							| 115 | 113 114 | nffv | ⊢ Ⅎ 𝑘 ( 𝐿 ‘ 𝑋 ) | 
						
							| 116 |  | nfcv | ⊢ Ⅎ 𝑘 𝐵 | 
						
							| 117 | 103 115 116 | nfov | ⊢ Ⅎ 𝑘 ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) | 
						
							| 118 | 102 117 | nfeq | ⊢ Ⅎ 𝑘 ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) | 
						
							| 119 | 1 | vonmea | ⊢ ( 𝜑  →  ( voln ‘ 𝑋 )  ∈  Meas ) | 
						
							| 120 | 119 | mea0 | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ ∅ )  =  0 ) | 
						
							| 121 | 120 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  ( ( voln ‘ 𝑋 ) ‘ ∅ )  =  0 ) | 
						
							| 122 | 4 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  𝐼  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 123 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  𝑘  ∈  𝑋 ) | 
						
							| 124 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 125 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 126 | 125 37 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 127 | 125 38 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 128 |  | icc0 | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑘 )  ∈  ℝ* )  →  ( ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) )  =  ∅  ↔  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 129 | 126 127 128 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) )  =  ∅  ↔  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 130 | 129 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  ( ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) )  =  ∅  ↔  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 131 | 124 130 | mpbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 132 |  | rspe | ⊢ ( ( 𝑘  ∈  𝑋  ∧  ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) )  =  ∅ )  →  ∃ 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 133 | 123 131 132 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  ∃ 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 134 |  | ixp0 | ⊢ ( ∃ 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) )  =  ∅  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 135 | 133 134 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 136 | 122 135 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  𝐼  =  ∅ ) | 
						
							| 137 | 136 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( ( voln ‘ 𝑋 ) ‘ ∅ ) ) | 
						
							| 138 |  | ne0i | ⊢ ( 𝑘  ∈  𝑋  →  𝑋  ≠  ∅ ) | 
						
							| 139 | 138 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝑋  ≠  ∅ ) | 
						
							| 140 | 139 82 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 141 | 140 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 142 |  | eleq1w | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  ∈  𝑋  ↔  𝑘  ∈  𝑋 ) ) | 
						
							| 143 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐴 ‘ 𝑗 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 144 | 66 143 | breq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 )  ↔  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 145 | 142 144 | 3anbi23d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  ↔  ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) ) ) ) | 
						
							| 146 | 145 | imbi1d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  0 )  ↔  ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  0 ) ) ) | 
						
							| 147 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 148 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  →  𝑋  ∈  Fin ) | 
						
							| 149 |  | volicore | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑘 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 150 | 37 38 149 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 151 | 150 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 152 | 151 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 153 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  →  𝑗  ∈  𝑋 ) | 
						
							| 154 | 50 51 | oveq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 155 | 154 | fveq2d | ⊢ ( 𝑘  =  𝑗  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) ) | 
						
							| 156 | 155 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  ∧  𝑘  =  𝑗 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) ) | 
						
							| 157 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 158 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 159 |  | volico2 | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑗 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) )  =  if ( ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  0 ) ) | 
						
							| 160 | 157 158 159 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) )  =  if ( ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  0 ) ) | 
						
							| 161 | 160 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) )  =  if ( ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  0 ) ) | 
						
							| 162 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  →  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 163 | 158 157 | ltnled | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 )  ↔  ¬  ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 164 | 163 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  →  ( ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 )  ↔  ¬  ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 165 | 162 164 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  →  ¬  ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 166 | 165 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  →  if ( ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐵 ‘ 𝑗 ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  0 )  =  0 ) | 
						
							| 167 | 161 166 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) )  =  0 ) | 
						
							| 168 | 167 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  ∧  𝑘  =  𝑗 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) )  =  0 ) | 
						
							| 169 | 156 168 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  ∧  𝑘  =  𝑗 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  0 ) | 
						
							| 170 | 147 148 152 153 169 | fprodeq0g | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  <  ( 𝐴 ‘ 𝑗 ) )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  0 ) | 
						
							| 171 | 146 170 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  0 ) | 
						
							| 172 | 141 171 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 )  =  0 ) | 
						
							| 173 | 121 137 172 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) | 
						
							| 174 | 173 | 3exp | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑋  →  ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) ) ) | 
						
							| 175 | 174 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( 𝑘  ∈  𝑋  →  ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) ) ) | 
						
							| 176 | 34 118 175 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( ∃ 𝑘  ∈  𝑋 ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) ) | 
						
							| 177 | 176 | imp | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ∃ 𝑘  ∈  𝑋 ( 𝐵 ‘ 𝑘 )  <  ( 𝐴 ‘ 𝑘 ) )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) | 
						
							| 178 | 98 177 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  ¬  ∀ 𝑘  ∈  𝑋 ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) | 
						
							| 179 | 84 178 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) | 
						
							| 180 | 33 179 | syldan | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) | 
						
							| 181 | 31 180 | pm2.61dan | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |