| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonicc.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
vonicc.a |
|- ( ph -> A : X --> RR ) |
| 3 |
|
vonicc.b |
|- ( ph -> B : X --> RR ) |
| 4 |
|
vonicc.i |
|- I = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) |
| 5 |
|
vonicc.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
| 6 |
2
|
adantr |
|- ( ( ph /\ X = (/) ) -> A : X --> RR ) |
| 7 |
|
feq2 |
|- ( X = (/) -> ( A : X --> RR <-> A : (/) --> RR ) ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( A : X --> RR <-> A : (/) --> RR ) ) |
| 9 |
6 8
|
mpbid |
|- ( ( ph /\ X = (/) ) -> A : (/) --> RR ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ X = (/) ) -> B : X --> RR ) |
| 11 |
|
feq2 |
|- ( X = (/) -> ( B : X --> RR <-> B : (/) --> RR ) ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( B : X --> RR <-> B : (/) --> RR ) ) |
| 13 |
10 12
|
mpbid |
|- ( ( ph /\ X = (/) ) -> B : (/) --> RR ) |
| 14 |
5 9 13
|
hoidmv0val |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` (/) ) B ) = 0 ) |
| 15 |
14
|
eqcomd |
|- ( ( ph /\ X = (/) ) -> 0 = ( A ( L ` (/) ) B ) ) |
| 16 |
|
fveq2 |
|- ( X = (/) -> ( voln ` X ) = ( voln ` (/) ) ) |
| 17 |
4
|
a1i |
|- ( X = (/) -> I = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) ) |
| 18 |
|
ixpeq1 |
|- ( X = (/) -> X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) = X_ k e. (/) ( ( A ` k ) [,] ( B ` k ) ) ) |
| 19 |
17 18
|
eqtrd |
|- ( X = (/) -> I = X_ k e. (/) ( ( A ` k ) [,] ( B ` k ) ) ) |
| 20 |
16 19
|
fveq12d |
|- ( X = (/) -> ( ( voln ` X ) ` I ) = ( ( voln ` (/) ) ` X_ k e. (/) ( ( A ` k ) [,] ( B ` k ) ) ) ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` I ) = ( ( voln ` (/) ) ` X_ k e. (/) ( ( A ` k ) [,] ( B ` k ) ) ) ) |
| 22 |
|
0fi |
|- (/) e. Fin |
| 23 |
22
|
a1i |
|- ( ( ph /\ X = (/) ) -> (/) e. Fin ) |
| 24 |
|
eqid |
|- dom ( voln ` (/) ) = dom ( voln ` (/) ) |
| 25 |
23 24 9 13
|
iccvonmbl |
|- ( ( ph /\ X = (/) ) -> X_ k e. (/) ( ( A ` k ) [,] ( B ` k ) ) e. dom ( voln ` (/) ) ) |
| 26 |
25
|
von0val |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` (/) ) ` X_ k e. (/) ( ( A ` k ) [,] ( B ` k ) ) ) = 0 ) |
| 27 |
21 26
|
eqtrd |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` I ) = 0 ) |
| 28 |
|
fveq2 |
|- ( X = (/) -> ( L ` X ) = ( L ` (/) ) ) |
| 29 |
28
|
oveqd |
|- ( X = (/) -> ( A ( L ` X ) B ) = ( A ( L ` (/) ) B ) ) |
| 30 |
29
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` X ) B ) = ( A ( L ` (/) ) B ) ) |
| 31 |
15 27 30
|
3eqtr4d |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
| 32 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> X =/= (/) ) |
| 34 |
|
nfv |
|- F/ k ( ph /\ X =/= (/) ) |
| 35 |
|
nfra1 |
|- F/ k A. k e. X ( A ` k ) <_ ( B ` k ) |
| 36 |
34 35
|
nfan |
|- F/ k ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) |
| 37 |
2
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
| 38 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
| 39 |
|
volico2 |
|- ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) <_ ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) |
| 40 |
37 38 39
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) <_ ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) |
| 41 |
40
|
ad4ant14 |
|- ( ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) <_ ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) |
| 42 |
|
rspa |
|- ( ( A. k e. X ( A ` k ) <_ ( B ` k ) /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) |
| 43 |
42
|
iftrued |
|- ( ( A. k e. X ( A ` k ) <_ ( B ` k ) /\ k e. X ) -> if ( ( A ` k ) <_ ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) = ( ( B ` k ) - ( A ` k ) ) ) |
| 44 |
43
|
adantll |
|- ( ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) /\ k e. X ) -> if ( ( A ` k ) <_ ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) = ( ( B ` k ) - ( A ` k ) ) ) |
| 45 |
41 44
|
eqtrd |
|- ( ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( ( B ` k ) - ( A ` k ) ) ) |
| 46 |
45
|
ex |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> ( k e. X -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( ( B ` k ) - ( A ` k ) ) ) ) |
| 47 |
36 46
|
ralrimi |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> A. k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( ( B ` k ) - ( A ` k ) ) ) |
| 48 |
47
|
prodeq2d |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
| 49 |
48
|
eqcomd |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 50 |
|
fveq2 |
|- ( k = j -> ( A ` k ) = ( A ` j ) ) |
| 51 |
|
fveq2 |
|- ( k = j -> ( B ` k ) = ( B ` j ) ) |
| 52 |
50 51
|
breq12d |
|- ( k = j -> ( ( A ` k ) <_ ( B ` k ) <-> ( A ` j ) <_ ( B ` j ) ) ) |
| 53 |
52
|
cbvralvw |
|- ( A. k e. X ( A ` k ) <_ ( B ` k ) <-> A. j e. X ( A ` j ) <_ ( B ` j ) ) |
| 54 |
53
|
biimpi |
|- ( A. k e. X ( A ` k ) <_ ( B ` k ) -> A. j e. X ( A ` j ) <_ ( B ` j ) ) |
| 55 |
54
|
adantl |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> A. j e. X ( A ` j ) <_ ( B ` j ) ) |
| 56 |
1
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> X e. Fin ) |
| 57 |
56
|
adantr |
|- ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) <_ ( B ` j ) ) -> X e. Fin ) |
| 58 |
2
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> A : X --> RR ) |
| 59 |
58
|
adantr |
|- ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) <_ ( B ` j ) ) -> A : X --> RR ) |
| 60 |
3
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> B : X --> RR ) |
| 61 |
60
|
adantr |
|- ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) <_ ( B ` j ) ) -> B : X --> RR ) |
| 62 |
|
simpr |
|- ( ( ph /\ X =/= (/) ) -> X =/= (/) ) |
| 63 |
62
|
adantr |
|- ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) <_ ( B ` j ) ) -> X =/= (/) ) |
| 64 |
53 42
|
sylanbr |
|- ( ( A. j e. X ( A ` j ) <_ ( B ` j ) /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) |
| 65 |
64
|
adantll |
|- ( ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) <_ ( B ` j ) ) /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) |
| 66 |
|
fveq2 |
|- ( j = k -> ( B ` j ) = ( B ` k ) ) |
| 67 |
66
|
oveq1d |
|- ( j = k -> ( ( B ` j ) + ( 1 / m ) ) = ( ( B ` k ) + ( 1 / m ) ) ) |
| 68 |
67
|
cbvmptv |
|- ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) |
| 69 |
68
|
mpteq2i |
|- ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) = ( m e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) |
| 70 |
|
oveq2 |
|- ( m = n -> ( 1 / m ) = ( 1 / n ) ) |
| 71 |
70
|
oveq2d |
|- ( m = n -> ( ( B ` k ) + ( 1 / m ) ) = ( ( B ` k ) + ( 1 / n ) ) ) |
| 72 |
71
|
mpteq2dv |
|- ( m = n -> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) |
| 73 |
72
|
cbvmptv |
|- ( m e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) |
| 74 |
69 73
|
eqtri |
|- ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) |
| 75 |
|
fveq2 |
|- ( i = n -> ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` i ) = ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` n ) ) |
| 76 |
75
|
fveq1d |
|- ( i = n -> ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` i ) ` k ) = ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) ) |
| 77 |
76
|
oveq2d |
|- ( i = n -> ( ( A ` k ) [,) ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` i ) ` k ) ) = ( ( A ` k ) [,) ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) ) ) |
| 78 |
77
|
ixpeq2dv |
|- ( i = n -> X_ k e. X ( ( A ` k ) [,) ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` i ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) ) ) |
| 79 |
78
|
cbvmptv |
|- ( i e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` i ) ` k ) ) ) = ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) ) ) |
| 80 |
57 59 61 63 65 4 74 79
|
vonicclem2 |
|- ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) <_ ( B ` j ) ) -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
| 81 |
55 80
|
syldan |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
| 82 |
5 56 62 58 60
|
hoidmvn0val |
|- ( ( ph /\ X =/= (/) ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 83 |
82
|
adantr |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 84 |
49 81 83
|
3eqtr4d |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
| 85 |
|
rexnal |
|- ( E. k e. X -. ( A ` k ) <_ ( B ` k ) <-> -. A. k e. X ( A ` k ) <_ ( B ` k ) ) |
| 86 |
85
|
bicomi |
|- ( -. A. k e. X ( A ` k ) <_ ( B ` k ) <-> E. k e. X -. ( A ` k ) <_ ( B ` k ) ) |
| 87 |
86
|
biimpi |
|- ( -. A. k e. X ( A ` k ) <_ ( B ` k ) -> E. k e. X -. ( A ` k ) <_ ( B ` k ) ) |
| 88 |
87
|
adantl |
|- ( ( ph /\ -. A. k e. X ( A ` k ) <_ ( B ` k ) ) -> E. k e. X -. ( A ` k ) <_ ( B ` k ) ) |
| 89 |
|
simpr |
|- ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) <_ ( B ` k ) ) -> -. ( A ` k ) <_ ( B ` k ) ) |
| 90 |
38
|
adantr |
|- ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) <_ ( B ` k ) ) -> ( B ` k ) e. RR ) |
| 91 |
37
|
adantr |
|- ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) <_ ( B ` k ) ) -> ( A ` k ) e. RR ) |
| 92 |
90 91
|
ltnled |
|- ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) <_ ( B ` k ) ) -> ( ( B ` k ) < ( A ` k ) <-> -. ( A ` k ) <_ ( B ` k ) ) ) |
| 93 |
89 92
|
mpbird |
|- ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) <_ ( B ` k ) ) -> ( B ` k ) < ( A ` k ) ) |
| 94 |
93
|
ex |
|- ( ( ph /\ k e. X ) -> ( -. ( A ` k ) <_ ( B ` k ) -> ( B ` k ) < ( A ` k ) ) ) |
| 95 |
94
|
reximdva |
|- ( ph -> ( E. k e. X -. ( A ` k ) <_ ( B ` k ) -> E. k e. X ( B ` k ) < ( A ` k ) ) ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ -. A. k e. X ( A ` k ) <_ ( B ` k ) ) -> ( E. k e. X -. ( A ` k ) <_ ( B ` k ) -> E. k e. X ( B ` k ) < ( A ` k ) ) ) |
| 97 |
88 96
|
mpd |
|- ( ( ph /\ -. A. k e. X ( A ` k ) <_ ( B ` k ) ) -> E. k e. X ( B ` k ) < ( A ` k ) ) |
| 98 |
97
|
adantlr |
|- ( ( ( ph /\ X =/= (/) ) /\ -. A. k e. X ( A ` k ) <_ ( B ` k ) ) -> E. k e. X ( B ` k ) < ( A ` k ) ) |
| 99 |
|
nfcv |
|- F/_ k ( voln ` X ) |
| 100 |
|
nfixp1 |
|- F/_ k X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) |
| 101 |
4 100
|
nfcxfr |
|- F/_ k I |
| 102 |
99 101
|
nffv |
|- F/_ k ( ( voln ` X ) ` I ) |
| 103 |
|
nfcv |
|- F/_ k A |
| 104 |
|
nfcv |
|- F/_ k Fin |
| 105 |
|
nfcv |
|- F/_ k ( RR ^m x ) |
| 106 |
|
nfv |
|- F/ k x = (/) |
| 107 |
|
nfcv |
|- F/_ k 0 |
| 108 |
|
nfcv |
|- F/_ k x |
| 109 |
108
|
nfcprod1 |
|- F/_ k prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) |
| 110 |
106 107 109
|
nfif |
|- F/_ k if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) |
| 111 |
105 105 110
|
nfmpo |
|- F/_ k ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) |
| 112 |
104 111
|
nfmpt |
|- F/_ k ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
| 113 |
5 112
|
nfcxfr |
|- F/_ k L |
| 114 |
|
nfcv |
|- F/_ k X |
| 115 |
113 114
|
nffv |
|- F/_ k ( L ` X ) |
| 116 |
|
nfcv |
|- F/_ k B |
| 117 |
103 115 116
|
nfov |
|- F/_ k ( A ( L ` X ) B ) |
| 118 |
102 117
|
nfeq |
|- F/ k ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) |
| 119 |
1
|
vonmea |
|- ( ph -> ( voln ` X ) e. Meas ) |
| 120 |
119
|
mea0 |
|- ( ph -> ( ( voln ` X ) ` (/) ) = 0 ) |
| 121 |
120
|
3ad2ant1 |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( ( voln ` X ) ` (/) ) = 0 ) |
| 122 |
4
|
a1i |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> I = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) ) |
| 123 |
|
simp2 |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> k e. X ) |
| 124 |
|
simp3 |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( B ` k ) < ( A ` k ) ) |
| 125 |
|
ressxr |
|- RR C_ RR* |
| 126 |
125 37
|
sselid |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR* ) |
| 127 |
125 38
|
sselid |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR* ) |
| 128 |
|
icc0 |
|- ( ( ( A ` k ) e. RR* /\ ( B ` k ) e. RR* ) -> ( ( ( A ` k ) [,] ( B ` k ) ) = (/) <-> ( B ` k ) < ( A ` k ) ) ) |
| 129 |
126 127 128
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( ( ( A ` k ) [,] ( B ` k ) ) = (/) <-> ( B ` k ) < ( A ` k ) ) ) |
| 130 |
129
|
3adant3 |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( ( ( A ` k ) [,] ( B ` k ) ) = (/) <-> ( B ` k ) < ( A ` k ) ) ) |
| 131 |
124 130
|
mpbird |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( ( A ` k ) [,] ( B ` k ) ) = (/) ) |
| 132 |
|
rspe |
|- ( ( k e. X /\ ( ( A ` k ) [,] ( B ` k ) ) = (/) ) -> E. k e. X ( ( A ` k ) [,] ( B ` k ) ) = (/) ) |
| 133 |
123 131 132
|
syl2anc |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> E. k e. X ( ( A ` k ) [,] ( B ` k ) ) = (/) ) |
| 134 |
|
ixp0 |
|- ( E. k e. X ( ( A ` k ) [,] ( B ` k ) ) = (/) -> X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) = (/) ) |
| 135 |
133 134
|
syl |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) = (/) ) |
| 136 |
122 135
|
eqtrd |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> I = (/) ) |
| 137 |
136
|
fveq2d |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( ( voln ` X ) ` I ) = ( ( voln ` X ) ` (/) ) ) |
| 138 |
|
ne0i |
|- ( k e. X -> X =/= (/) ) |
| 139 |
138
|
adantl |
|- ( ( ph /\ k e. X ) -> X =/= (/) ) |
| 140 |
139 82
|
syldan |
|- ( ( ph /\ k e. X ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 141 |
140
|
3adant3 |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 142 |
|
eleq1w |
|- ( j = k -> ( j e. X <-> k e. X ) ) |
| 143 |
|
fveq2 |
|- ( j = k -> ( A ` j ) = ( A ` k ) ) |
| 144 |
66 143
|
breq12d |
|- ( j = k -> ( ( B ` j ) < ( A ` j ) <-> ( B ` k ) < ( A ` k ) ) ) |
| 145 |
142 144
|
3anbi23d |
|- ( j = k -> ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) <-> ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) ) ) |
| 146 |
145
|
imbi1d |
|- ( j = k -> ( ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) <-> ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) ) ) |
| 147 |
|
nfv |
|- F/ k ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) |
| 148 |
1
|
3ad2ant1 |
|- ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> X e. Fin ) |
| 149 |
|
volicore |
|- ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
| 150 |
37 38 149
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
| 151 |
150
|
recnd |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. CC ) |
| 152 |
151
|
3ad2antl1 |
|- ( ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. CC ) |
| 153 |
|
simp2 |
|- ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> j e. X ) |
| 154 |
50 51
|
oveq12d |
|- ( k = j -> ( ( A ` k ) [,) ( B ` k ) ) = ( ( A ` j ) [,) ( B ` j ) ) ) |
| 155 |
154
|
fveq2d |
|- ( k = j -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) ) |
| 156 |
155
|
adantl |
|- ( ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) /\ k = j ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) ) |
| 157 |
2
|
ffvelcdmda |
|- ( ( ph /\ j e. X ) -> ( A ` j ) e. RR ) |
| 158 |
3
|
ffvelcdmda |
|- ( ( ph /\ j e. X ) -> ( B ` j ) e. RR ) |
| 159 |
|
volico2 |
|- ( ( ( A ` j ) e. RR /\ ( B ` j ) e. RR ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = if ( ( A ` j ) <_ ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) ) |
| 160 |
157 158 159
|
syl2anc |
|- ( ( ph /\ j e. X ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = if ( ( A ` j ) <_ ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) ) |
| 161 |
160
|
3adant3 |
|- ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = if ( ( A ` j ) <_ ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) ) |
| 162 |
|
simp3 |
|- ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> ( B ` j ) < ( A ` j ) ) |
| 163 |
158 157
|
ltnled |
|- ( ( ph /\ j e. X ) -> ( ( B ` j ) < ( A ` j ) <-> -. ( A ` j ) <_ ( B ` j ) ) ) |
| 164 |
163
|
3adant3 |
|- ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> ( ( B ` j ) < ( A ` j ) <-> -. ( A ` j ) <_ ( B ` j ) ) ) |
| 165 |
162 164
|
mpbid |
|- ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> -. ( A ` j ) <_ ( B ` j ) ) |
| 166 |
165
|
iffalsed |
|- ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> if ( ( A ` j ) <_ ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) = 0 ) |
| 167 |
161 166
|
eqtrd |
|- ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = 0 ) |
| 168 |
167
|
adantr |
|- ( ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) /\ k = j ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = 0 ) |
| 169 |
156 168
|
eqtrd |
|- ( ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) /\ k = j ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) |
| 170 |
147 148 152 153 169
|
fprodeq0g |
|- ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) |
| 171 |
146 170
|
chvarvv |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) |
| 172 |
141 171
|
eqtrd |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( A ( L ` X ) B ) = 0 ) |
| 173 |
121 137 172
|
3eqtr4d |
|- ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
| 174 |
173
|
3exp |
|- ( ph -> ( k e. X -> ( ( B ` k ) < ( A ` k ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) ) ) |
| 175 |
174
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> ( k e. X -> ( ( B ` k ) < ( A ` k ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) ) ) |
| 176 |
34 118 175
|
rexlimd |
|- ( ( ph /\ X =/= (/) ) -> ( E. k e. X ( B ` k ) < ( A ` k ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) ) |
| 177 |
176
|
imp |
|- ( ( ( ph /\ X =/= (/) ) /\ E. k e. X ( B ` k ) < ( A ` k ) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
| 178 |
98 177
|
syldan |
|- ( ( ( ph /\ X =/= (/) ) /\ -. A. k e. X ( A ` k ) <_ ( B ` k ) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
| 179 |
84 178
|
pm2.61dan |
|- ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
| 180 |
33 179
|
syldan |
|- ( ( ph /\ -. X = (/) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
| 181 |
31 180
|
pm2.61dan |
|- ( ph -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |