| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonicc.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | vonicc.a |  |-  ( ph -> A : X --> RR ) | 
						
							| 3 |  | vonicc.b |  |-  ( ph -> B : X --> RR ) | 
						
							| 4 |  | vonicc.i |  |-  I = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) | 
						
							| 5 |  | vonicc.l |  |-  L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) | 
						
							| 6 | 2 | adantr |  |-  ( ( ph /\ X = (/) ) -> A : X --> RR ) | 
						
							| 7 |  | feq2 |  |-  ( X = (/) -> ( A : X --> RR <-> A : (/) --> RR ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( A : X --> RR <-> A : (/) --> RR ) ) | 
						
							| 9 | 6 8 | mpbid |  |-  ( ( ph /\ X = (/) ) -> A : (/) --> RR ) | 
						
							| 10 | 3 | adantr |  |-  ( ( ph /\ X = (/) ) -> B : X --> RR ) | 
						
							| 11 |  | feq2 |  |-  ( X = (/) -> ( B : X --> RR <-> B : (/) --> RR ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( B : X --> RR <-> B : (/) --> RR ) ) | 
						
							| 13 | 10 12 | mpbid |  |-  ( ( ph /\ X = (/) ) -> B : (/) --> RR ) | 
						
							| 14 | 5 9 13 | hoidmv0val |  |-  ( ( ph /\ X = (/) ) -> ( A ( L ` (/) ) B ) = 0 ) | 
						
							| 15 | 14 | eqcomd |  |-  ( ( ph /\ X = (/) ) -> 0 = ( A ( L ` (/) ) B ) ) | 
						
							| 16 |  | fveq2 |  |-  ( X = (/) -> ( voln ` X ) = ( voln ` (/) ) ) | 
						
							| 17 | 4 | a1i |  |-  ( X = (/) -> I = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) ) | 
						
							| 18 |  | ixpeq1 |  |-  ( X = (/) -> X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) = X_ k e. (/) ( ( A ` k ) [,] ( B ` k ) ) ) | 
						
							| 19 | 17 18 | eqtrd |  |-  ( X = (/) -> I = X_ k e. (/) ( ( A ` k ) [,] ( B ` k ) ) ) | 
						
							| 20 | 16 19 | fveq12d |  |-  ( X = (/) -> ( ( voln ` X ) ` I ) = ( ( voln ` (/) ) ` X_ k e. (/) ( ( A ` k ) [,] ( B ` k ) ) ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` I ) = ( ( voln ` (/) ) ` X_ k e. (/) ( ( A ` k ) [,] ( B ` k ) ) ) ) | 
						
							| 22 |  | 0fi |  |-  (/) e. Fin | 
						
							| 23 | 22 | a1i |  |-  ( ( ph /\ X = (/) ) -> (/) e. Fin ) | 
						
							| 24 |  | eqid |  |-  dom ( voln ` (/) ) = dom ( voln ` (/) ) | 
						
							| 25 | 23 24 9 13 | iccvonmbl |  |-  ( ( ph /\ X = (/) ) -> X_ k e. (/) ( ( A ` k ) [,] ( B ` k ) ) e. dom ( voln ` (/) ) ) | 
						
							| 26 | 25 | von0val |  |-  ( ( ph /\ X = (/) ) -> ( ( voln ` (/) ) ` X_ k e. (/) ( ( A ` k ) [,] ( B ` k ) ) ) = 0 ) | 
						
							| 27 | 21 26 | eqtrd |  |-  ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` I ) = 0 ) | 
						
							| 28 |  | fveq2 |  |-  ( X = (/) -> ( L ` X ) = ( L ` (/) ) ) | 
						
							| 29 | 28 | oveqd |  |-  ( X = (/) -> ( A ( L ` X ) B ) = ( A ( L ` (/) ) B ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( A ( L ` X ) B ) = ( A ( L ` (/) ) B ) ) | 
						
							| 31 | 15 27 30 | 3eqtr4d |  |-  ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) | 
						
							| 32 |  | neqne |  |-  ( -. X = (/) -> X =/= (/) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ -. X = (/) ) -> X =/= (/) ) | 
						
							| 34 |  | nfv |  |-  F/ k ( ph /\ X =/= (/) ) | 
						
							| 35 |  | nfra1 |  |-  F/ k A. k e. X ( A ` k ) <_ ( B ` k ) | 
						
							| 36 | 34 35 | nfan |  |-  F/ k ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) | 
						
							| 37 | 2 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 38 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 39 |  | volico2 |  |-  ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) <_ ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) | 
						
							| 40 | 37 38 39 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) <_ ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) | 
						
							| 41 | 40 | ad4ant14 |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) <_ ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) | 
						
							| 42 |  | rspa |  |-  ( ( A. k e. X ( A ` k ) <_ ( B ` k ) /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) | 
						
							| 43 | 42 | iftrued |  |-  ( ( A. k e. X ( A ` k ) <_ ( B ` k ) /\ k e. X ) -> if ( ( A ` k ) <_ ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) = ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 44 | 43 | adantll |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) /\ k e. X ) -> if ( ( A ` k ) <_ ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) = ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 45 | 41 44 | eqtrd |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 46 | 45 | ex |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> ( k e. X -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( ( B ` k ) - ( A ` k ) ) ) ) | 
						
							| 47 | 36 46 | ralrimi |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> A. k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 48 | 47 | prodeq2d |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 49 | 48 | eqcomd |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 50 |  | fveq2 |  |-  ( k = j -> ( A ` k ) = ( A ` j ) ) | 
						
							| 51 |  | fveq2 |  |-  ( k = j -> ( B ` k ) = ( B ` j ) ) | 
						
							| 52 | 50 51 | breq12d |  |-  ( k = j -> ( ( A ` k ) <_ ( B ` k ) <-> ( A ` j ) <_ ( B ` j ) ) ) | 
						
							| 53 | 52 | cbvralvw |  |-  ( A. k e. X ( A ` k ) <_ ( B ` k ) <-> A. j e. X ( A ` j ) <_ ( B ` j ) ) | 
						
							| 54 | 53 | biimpi |  |-  ( A. k e. X ( A ` k ) <_ ( B ` k ) -> A. j e. X ( A ` j ) <_ ( B ` j ) ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> A. j e. X ( A ` j ) <_ ( B ` j ) ) | 
						
							| 56 | 1 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> X e. Fin ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) <_ ( B ` j ) ) -> X e. Fin ) | 
						
							| 58 | 2 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> A : X --> RR ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) <_ ( B ` j ) ) -> A : X --> RR ) | 
						
							| 60 | 3 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> B : X --> RR ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) <_ ( B ` j ) ) -> B : X --> RR ) | 
						
							| 62 |  | simpr |  |-  ( ( ph /\ X =/= (/) ) -> X =/= (/) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) <_ ( B ` j ) ) -> X =/= (/) ) | 
						
							| 64 | 53 42 | sylanbr |  |-  ( ( A. j e. X ( A ` j ) <_ ( B ` j ) /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) | 
						
							| 65 | 64 | adantll |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) <_ ( B ` j ) ) /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) | 
						
							| 66 |  | fveq2 |  |-  ( j = k -> ( B ` j ) = ( B ` k ) ) | 
						
							| 67 | 66 | oveq1d |  |-  ( j = k -> ( ( B ` j ) + ( 1 / m ) ) = ( ( B ` k ) + ( 1 / m ) ) ) | 
						
							| 68 | 67 | cbvmptv |  |-  ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) | 
						
							| 69 | 68 | mpteq2i |  |-  ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) = ( m e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) | 
						
							| 70 |  | oveq2 |  |-  ( m = n -> ( 1 / m ) = ( 1 / n ) ) | 
						
							| 71 | 70 | oveq2d |  |-  ( m = n -> ( ( B ` k ) + ( 1 / m ) ) = ( ( B ` k ) + ( 1 / n ) ) ) | 
						
							| 72 | 71 | mpteq2dv |  |-  ( m = n -> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) | 
						
							| 73 | 72 | cbvmptv |  |-  ( m e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) | 
						
							| 74 | 69 73 | eqtri |  |-  ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) | 
						
							| 75 |  | fveq2 |  |-  ( i = n -> ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` i ) = ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` n ) ) | 
						
							| 76 | 75 | fveq1d |  |-  ( i = n -> ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` i ) ` k ) = ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) ) | 
						
							| 77 | 76 | oveq2d |  |-  ( i = n -> ( ( A ` k ) [,) ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` i ) ` k ) ) = ( ( A ` k ) [,) ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) ) ) | 
						
							| 78 | 77 | ixpeq2dv |  |-  ( i = n -> X_ k e. X ( ( A ` k ) [,) ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` i ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) ) ) | 
						
							| 79 | 78 | cbvmptv |  |-  ( i e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` i ) ` k ) ) ) = ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( ( m e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) ) ) | 
						
							| 80 | 57 59 61 63 65 4 74 79 | vonicclem2 |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) <_ ( B ` j ) ) -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 81 | 55 80 | syldan |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 82 | 5 56 62 58 60 | hoidmvn0val |  |-  ( ( ph /\ X =/= (/) ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 84 | 49 81 83 | 3eqtr4d |  |-  ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) <_ ( B ` k ) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) | 
						
							| 85 |  | rexnal |  |-  ( E. k e. X -. ( A ` k ) <_ ( B ` k ) <-> -. A. k e. X ( A ` k ) <_ ( B ` k ) ) | 
						
							| 86 | 85 | bicomi |  |-  ( -. A. k e. X ( A ` k ) <_ ( B ` k ) <-> E. k e. X -. ( A ` k ) <_ ( B ` k ) ) | 
						
							| 87 | 86 | biimpi |  |-  ( -. A. k e. X ( A ` k ) <_ ( B ` k ) -> E. k e. X -. ( A ` k ) <_ ( B ` k ) ) | 
						
							| 88 | 87 | adantl |  |-  ( ( ph /\ -. A. k e. X ( A ` k ) <_ ( B ` k ) ) -> E. k e. X -. ( A ` k ) <_ ( B ` k ) ) | 
						
							| 89 |  | simpr |  |-  ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) <_ ( B ` k ) ) -> -. ( A ` k ) <_ ( B ` k ) ) | 
						
							| 90 | 38 | adantr |  |-  ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) <_ ( B ` k ) ) -> ( B ` k ) e. RR ) | 
						
							| 91 | 37 | adantr |  |-  ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) <_ ( B ` k ) ) -> ( A ` k ) e. RR ) | 
						
							| 92 | 90 91 | ltnled |  |-  ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) <_ ( B ` k ) ) -> ( ( B ` k ) < ( A ` k ) <-> -. ( A ` k ) <_ ( B ` k ) ) ) | 
						
							| 93 | 89 92 | mpbird |  |-  ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) <_ ( B ` k ) ) -> ( B ` k ) < ( A ` k ) ) | 
						
							| 94 | 93 | ex |  |-  ( ( ph /\ k e. X ) -> ( -. ( A ` k ) <_ ( B ` k ) -> ( B ` k ) < ( A ` k ) ) ) | 
						
							| 95 | 94 | reximdva |  |-  ( ph -> ( E. k e. X -. ( A ` k ) <_ ( B ` k ) -> E. k e. X ( B ` k ) < ( A ` k ) ) ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ph /\ -. A. k e. X ( A ` k ) <_ ( B ` k ) ) -> ( E. k e. X -. ( A ` k ) <_ ( B ` k ) -> E. k e. X ( B ` k ) < ( A ` k ) ) ) | 
						
							| 97 | 88 96 | mpd |  |-  ( ( ph /\ -. A. k e. X ( A ` k ) <_ ( B ` k ) ) -> E. k e. X ( B ` k ) < ( A ` k ) ) | 
						
							| 98 | 97 | adantlr |  |-  ( ( ( ph /\ X =/= (/) ) /\ -. A. k e. X ( A ` k ) <_ ( B ` k ) ) -> E. k e. X ( B ` k ) < ( A ` k ) ) | 
						
							| 99 |  | nfcv |  |-  F/_ k ( voln ` X ) | 
						
							| 100 |  | nfixp1 |  |-  F/_ k X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) | 
						
							| 101 | 4 100 | nfcxfr |  |-  F/_ k I | 
						
							| 102 | 99 101 | nffv |  |-  F/_ k ( ( voln ` X ) ` I ) | 
						
							| 103 |  | nfcv |  |-  F/_ k A | 
						
							| 104 |  | nfcv |  |-  F/_ k Fin | 
						
							| 105 |  | nfcv |  |-  F/_ k ( RR ^m x ) | 
						
							| 106 |  | nfv |  |-  F/ k x = (/) | 
						
							| 107 |  | nfcv |  |-  F/_ k 0 | 
						
							| 108 |  | nfcv |  |-  F/_ k x | 
						
							| 109 | 108 | nfcprod1 |  |-  F/_ k prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) | 
						
							| 110 | 106 107 109 | nfif |  |-  F/_ k if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) | 
						
							| 111 | 105 105 110 | nfmpo |  |-  F/_ k ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) | 
						
							| 112 | 104 111 | nfmpt |  |-  F/_ k ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) | 
						
							| 113 | 5 112 | nfcxfr |  |-  F/_ k L | 
						
							| 114 |  | nfcv |  |-  F/_ k X | 
						
							| 115 | 113 114 | nffv |  |-  F/_ k ( L ` X ) | 
						
							| 116 |  | nfcv |  |-  F/_ k B | 
						
							| 117 | 103 115 116 | nfov |  |-  F/_ k ( A ( L ` X ) B ) | 
						
							| 118 | 102 117 | nfeq |  |-  F/ k ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) | 
						
							| 119 | 1 | vonmea |  |-  ( ph -> ( voln ` X ) e. Meas ) | 
						
							| 120 | 119 | mea0 |  |-  ( ph -> ( ( voln ` X ) ` (/) ) = 0 ) | 
						
							| 121 | 120 | 3ad2ant1 |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( ( voln ` X ) ` (/) ) = 0 ) | 
						
							| 122 | 4 | a1i |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> I = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) ) | 
						
							| 123 |  | simp2 |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> k e. X ) | 
						
							| 124 |  | simp3 |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( B ` k ) < ( A ` k ) ) | 
						
							| 125 |  | ressxr |  |-  RR C_ RR* | 
						
							| 126 | 125 37 | sselid |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. RR* ) | 
						
							| 127 | 125 38 | sselid |  |-  ( ( ph /\ k e. X ) -> ( B ` k ) e. RR* ) | 
						
							| 128 |  | icc0 |  |-  ( ( ( A ` k ) e. RR* /\ ( B ` k ) e. RR* ) -> ( ( ( A ` k ) [,] ( B ` k ) ) = (/) <-> ( B ` k ) < ( A ` k ) ) ) | 
						
							| 129 | 126 127 128 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( ( ( A ` k ) [,] ( B ` k ) ) = (/) <-> ( B ` k ) < ( A ` k ) ) ) | 
						
							| 130 | 129 | 3adant3 |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( ( ( A ` k ) [,] ( B ` k ) ) = (/) <-> ( B ` k ) < ( A ` k ) ) ) | 
						
							| 131 | 124 130 | mpbird |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( ( A ` k ) [,] ( B ` k ) ) = (/) ) | 
						
							| 132 |  | rspe |  |-  ( ( k e. X /\ ( ( A ` k ) [,] ( B ` k ) ) = (/) ) -> E. k e. X ( ( A ` k ) [,] ( B ` k ) ) = (/) ) | 
						
							| 133 | 123 131 132 | syl2anc |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> E. k e. X ( ( A ` k ) [,] ( B ` k ) ) = (/) ) | 
						
							| 134 |  | ixp0 |  |-  ( E. k e. X ( ( A ` k ) [,] ( B ` k ) ) = (/) -> X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) = (/) ) | 
						
							| 135 | 133 134 | syl |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) = (/) ) | 
						
							| 136 | 122 135 | eqtrd |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> I = (/) ) | 
						
							| 137 | 136 | fveq2d |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( ( voln ` X ) ` I ) = ( ( voln ` X ) ` (/) ) ) | 
						
							| 138 |  | ne0i |  |-  ( k e. X -> X =/= (/) ) | 
						
							| 139 | 138 | adantl |  |-  ( ( ph /\ k e. X ) -> X =/= (/) ) | 
						
							| 140 | 139 82 | syldan |  |-  ( ( ph /\ k e. X ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 141 | 140 | 3adant3 |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 142 |  | eleq1w |  |-  ( j = k -> ( j e. X <-> k e. X ) ) | 
						
							| 143 |  | fveq2 |  |-  ( j = k -> ( A ` j ) = ( A ` k ) ) | 
						
							| 144 | 66 143 | breq12d |  |-  ( j = k -> ( ( B ` j ) < ( A ` j ) <-> ( B ` k ) < ( A ` k ) ) ) | 
						
							| 145 | 142 144 | 3anbi23d |  |-  ( j = k -> ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) <-> ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) ) ) | 
						
							| 146 | 145 | imbi1d |  |-  ( j = k -> ( ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) <-> ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) ) ) | 
						
							| 147 |  | nfv |  |-  F/ k ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) | 
						
							| 148 | 1 | 3ad2ant1 |  |-  ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> X e. Fin ) | 
						
							| 149 |  | volicore |  |-  ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) | 
						
							| 150 | 37 38 149 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) | 
						
							| 151 | 150 | recnd |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. CC ) | 
						
							| 152 | 151 | 3ad2antl1 |  |-  ( ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. CC ) | 
						
							| 153 |  | simp2 |  |-  ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> j e. X ) | 
						
							| 154 | 50 51 | oveq12d |  |-  ( k = j -> ( ( A ` k ) [,) ( B ` k ) ) = ( ( A ` j ) [,) ( B ` j ) ) ) | 
						
							| 155 | 154 | fveq2d |  |-  ( k = j -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) ) | 
						
							| 156 | 155 | adantl |  |-  ( ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) /\ k = j ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) ) | 
						
							| 157 | 2 | ffvelcdmda |  |-  ( ( ph /\ j e. X ) -> ( A ` j ) e. RR ) | 
						
							| 158 | 3 | ffvelcdmda |  |-  ( ( ph /\ j e. X ) -> ( B ` j ) e. RR ) | 
						
							| 159 |  | volico2 |  |-  ( ( ( A ` j ) e. RR /\ ( B ` j ) e. RR ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = if ( ( A ` j ) <_ ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) ) | 
						
							| 160 | 157 158 159 | syl2anc |  |-  ( ( ph /\ j e. X ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = if ( ( A ` j ) <_ ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) ) | 
						
							| 161 | 160 | 3adant3 |  |-  ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = if ( ( A ` j ) <_ ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) ) | 
						
							| 162 |  | simp3 |  |-  ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> ( B ` j ) < ( A ` j ) ) | 
						
							| 163 | 158 157 | ltnled |  |-  ( ( ph /\ j e. X ) -> ( ( B ` j ) < ( A ` j ) <-> -. ( A ` j ) <_ ( B ` j ) ) ) | 
						
							| 164 | 163 | 3adant3 |  |-  ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> ( ( B ` j ) < ( A ` j ) <-> -. ( A ` j ) <_ ( B ` j ) ) ) | 
						
							| 165 | 162 164 | mpbid |  |-  ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> -. ( A ` j ) <_ ( B ` j ) ) | 
						
							| 166 | 165 | iffalsed |  |-  ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> if ( ( A ` j ) <_ ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) = 0 ) | 
						
							| 167 | 161 166 | eqtrd |  |-  ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = 0 ) | 
						
							| 168 | 167 | adantr |  |-  ( ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) /\ k = j ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = 0 ) | 
						
							| 169 | 156 168 | eqtrd |  |-  ( ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) /\ k = j ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) | 
						
							| 170 | 147 148 152 153 169 | fprodeq0g |  |-  ( ( ph /\ j e. X /\ ( B ` j ) < ( A ` j ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) | 
						
							| 171 | 146 170 | chvarvv |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) | 
						
							| 172 | 141 171 | eqtrd |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( A ( L ` X ) B ) = 0 ) | 
						
							| 173 | 121 137 172 | 3eqtr4d |  |-  ( ( ph /\ k e. X /\ ( B ` k ) < ( A ` k ) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) | 
						
							| 174 | 173 | 3exp |  |-  ( ph -> ( k e. X -> ( ( B ` k ) < ( A ` k ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) ) ) | 
						
							| 175 | 174 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> ( k e. X -> ( ( B ` k ) < ( A ` k ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) ) ) | 
						
							| 176 | 34 118 175 | rexlimd |  |-  ( ( ph /\ X =/= (/) ) -> ( E. k e. X ( B ` k ) < ( A ` k ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) ) | 
						
							| 177 | 176 | imp |  |-  ( ( ( ph /\ X =/= (/) ) /\ E. k e. X ( B ` k ) < ( A ` k ) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) | 
						
							| 178 | 98 177 | syldan |  |-  ( ( ( ph /\ X =/= (/) ) /\ -. A. k e. X ( A ` k ) <_ ( B ` k ) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) | 
						
							| 179 | 84 178 | pm2.61dan |  |-  ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) | 
						
							| 180 | 33 179 | syldan |  |-  ( ( ph /\ -. X = (/) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) | 
						
							| 181 | 31 180 | pm2.61dan |  |-  ( ph -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |