Metamath Proof Explorer


Theorem snvonmbl

Description: A n-dimensional singleton is Lebesgue measurable. This is the first statement in Proposition 115G (e) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses snvonmbl.1
|- ( ph -> X e. Fin )
snvonmbl.2
|- ( ph -> A e. ( RR ^m X ) )
Assertion snvonmbl
|- ( ph -> { A } e. dom ( voln ` X ) )

Proof

Step Hyp Ref Expression
1 snvonmbl.1
 |-  ( ph -> X e. Fin )
2 snvonmbl.2
 |-  ( ph -> A e. ( RR ^m X ) )
3 2 rrxsnicc
 |-  ( ph -> X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) = { A } )
4 3 eqcomd
 |-  ( ph -> { A } = X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) )
5 eqid
 |-  dom ( voln ` X ) = dom ( voln ` X )
6 elmapi
 |-  ( A e. ( RR ^m X ) -> A : X --> RR )
7 2 6 syl
 |-  ( ph -> A : X --> RR )
8 1 5 7 7 iccvonmbl
 |-  ( ph -> X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) e. dom ( voln ` X ) )
9 4 8 eqeltrd
 |-  ( ph -> { A } e. dom ( voln ` X ) )