| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snvonmbl.1 |
|- ( ph -> X e. Fin ) |
| 2 |
|
snvonmbl.2 |
|- ( ph -> A e. ( RR ^m X ) ) |
| 3 |
2
|
rrxsnicc |
|- ( ph -> X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) = { A } ) |
| 4 |
3
|
eqcomd |
|- ( ph -> { A } = X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) |
| 5 |
|
eqid |
|- dom ( voln ` X ) = dom ( voln ` X ) |
| 6 |
|
elmapi |
|- ( A e. ( RR ^m X ) -> A : X --> RR ) |
| 7 |
2 6
|
syl |
|- ( ph -> A : X --> RR ) |
| 8 |
1 5 7 7
|
iccvonmbl |
|- ( ph -> X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) e. dom ( voln ` X ) ) |
| 9 |
4 8
|
eqeltrd |
|- ( ph -> { A } e. dom ( voln ` X ) ) |