| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonicclem2.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
vonicclem2.a |
|- ( ph -> A : X --> RR ) |
| 3 |
|
vonicclem2.b |
|- ( ph -> B : X --> RR ) |
| 4 |
|
vonicclem2.n |
|- ( ph -> X =/= (/) ) |
| 5 |
|
vonicclem2.t |
|- ( ( ph /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) |
| 6 |
|
vonicclem2.i |
|- I = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) |
| 7 |
|
vonicclem2.c |
|- C = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) |
| 8 |
|
vonicclem2.d |
|- D = ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
| 9 |
|
nfv |
|- F/ n ph |
| 10 |
1
|
vonmea |
|- ( ph -> ( voln ` X ) e. Meas ) |
| 11 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 12 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 13 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. Fin ) |
| 14 |
|
eqid |
|- dom ( voln ` X ) = dom ( voln ` X ) |
| 15 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> A : X --> RR ) |
| 16 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
| 17 |
16
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR ) |
| 18 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
| 19 |
18
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) |
| 20 |
17 19
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / n ) ) e. RR ) |
| 21 |
20
|
fmpttd |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) : X --> RR ) |
| 22 |
7
|
a1i |
|- ( ph -> C = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) ) |
| 23 |
1
|
mptexd |
|- ( ph -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) e. _V ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) e. _V ) |
| 25 |
22 24
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) = ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) |
| 26 |
25
|
feq1d |
|- ( ( ph /\ n e. NN ) -> ( ( C ` n ) : X --> RR <-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) : X --> RR ) ) |
| 27 |
21 26
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR ) |
| 28 |
13 14 15 27
|
hoimbl |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) e. dom ( voln ` X ) ) |
| 29 |
28 8
|
fmptd |
|- ( ph -> D : NN --> dom ( voln ` X ) ) |
| 30 |
|
nfv |
|- F/ k ( ph /\ n e. NN ) |
| 31 |
|
ressxr |
|- RR C_ RR* |
| 32 |
2
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
| 33 |
31 32
|
sselid |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR* ) |
| 34 |
33
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR* ) |
| 35 |
|
ovexd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / n ) ) e. _V ) |
| 36 |
25 35
|
fvmpt2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( B ` k ) + ( 1 / n ) ) ) |
| 37 |
36 20
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR ) |
| 38 |
37
|
rexrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR* ) |
| 39 |
15
|
ffvelcdmda |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR ) |
| 40 |
39
|
leidd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) <_ ( A ` k ) ) |
| 41 |
|
1red |
|- ( n e. NN -> 1 e. RR ) |
| 42 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
| 43 |
42 41
|
readdcld |
|- ( n e. NN -> ( n + 1 ) e. RR ) |
| 44 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
| 45 |
|
nnne0 |
|- ( ( n + 1 ) e. NN -> ( n + 1 ) =/= 0 ) |
| 46 |
44 45
|
syl |
|- ( n e. NN -> ( n + 1 ) =/= 0 ) |
| 47 |
41 43 46
|
redivcld |
|- ( n e. NN -> ( 1 / ( n + 1 ) ) e. RR ) |
| 48 |
47
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / ( n + 1 ) ) e. RR ) |
| 49 |
42
|
ltp1d |
|- ( n e. NN -> n < ( n + 1 ) ) |
| 50 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
| 51 |
44
|
nnrpd |
|- ( n e. NN -> ( n + 1 ) e. RR+ ) |
| 52 |
50 51
|
ltrecd |
|- ( n e. NN -> ( n < ( n + 1 ) <-> ( 1 / ( n + 1 ) ) < ( 1 / n ) ) ) |
| 53 |
49 52
|
mpbid |
|- ( n e. NN -> ( 1 / ( n + 1 ) ) < ( 1 / n ) ) |
| 54 |
47 18 53
|
ltled |
|- ( n e. NN -> ( 1 / ( n + 1 ) ) <_ ( 1 / n ) ) |
| 55 |
54
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / ( n + 1 ) ) <_ ( 1 / n ) ) |
| 56 |
48 19 17 55
|
leadd2dd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) <_ ( ( B ` k ) + ( 1 / n ) ) ) |
| 57 |
|
oveq2 |
|- ( n = m -> ( 1 / n ) = ( 1 / m ) ) |
| 58 |
57
|
oveq2d |
|- ( n = m -> ( ( B ` k ) + ( 1 / n ) ) = ( ( B ` k ) + ( 1 / m ) ) ) |
| 59 |
58
|
mpteq2dv |
|- ( n = m -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) |
| 60 |
59
|
cbvmptv |
|- ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) = ( m e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) |
| 61 |
7 60
|
eqtri |
|- C = ( m e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) |
| 62 |
|
oveq2 |
|- ( m = ( n + 1 ) -> ( 1 / m ) = ( 1 / ( n + 1 ) ) ) |
| 63 |
62
|
oveq2d |
|- ( m = ( n + 1 ) -> ( ( B ` k ) + ( 1 / m ) ) = ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) |
| 64 |
63
|
mpteq2dv |
|- ( m = ( n + 1 ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) ) |
| 65 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
| 66 |
65
|
peano2nnd |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) |
| 67 |
13
|
mptexd |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) e. _V ) |
| 68 |
61 64 66 67
|
fvmptd3 |
|- ( ( ph /\ n e. NN ) -> ( C ` ( n + 1 ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) ) |
| 69 |
|
ovexd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) e. _V ) |
| 70 |
68 69
|
fvmpt2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) = ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) |
| 71 |
70 36
|
breq12d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) <-> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) <_ ( ( B ` k ) + ( 1 / n ) ) ) ) |
| 72 |
56 71
|
mpbird |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) ) |
| 73 |
|
icossico |
|- ( ( ( ( A ` k ) e. RR* /\ ( ( C ` n ) ` k ) e. RR* ) /\ ( ( A ` k ) <_ ( A ` k ) /\ ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) ) ) -> ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) C_ ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
| 74 |
34 38 40 72 73
|
syl22anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) C_ ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
| 75 |
30 74
|
ixpssixp |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
| 76 |
|
fveq2 |
|- ( n = m -> ( C ` n ) = ( C ` m ) ) |
| 77 |
76
|
fveq1d |
|- ( n = m -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) |
| 78 |
77
|
oveq2d |
|- ( n = m -> ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) ) |
| 79 |
78
|
ixpeq2dv |
|- ( n = m -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) ) |
| 80 |
79
|
cbvmptv |
|- ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = ( m e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) ) |
| 81 |
8 80
|
eqtri |
|- D = ( m e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) ) |
| 82 |
|
fveq2 |
|- ( m = ( n + 1 ) -> ( C ` m ) = ( C ` ( n + 1 ) ) ) |
| 83 |
82
|
fveq1d |
|- ( m = ( n + 1 ) -> ( ( C ` m ) ` k ) = ( ( C ` ( n + 1 ) ) ` k ) ) |
| 84 |
83
|
oveq2d |
|- ( m = ( n + 1 ) -> ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) = ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) ) |
| 85 |
84
|
ixpeq2dv |
|- ( m = ( n + 1 ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) ) |
| 86 |
|
ovex |
|- ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V |
| 87 |
86
|
rgenw |
|- A. k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V |
| 88 |
|
ixpexg |
|- ( A. k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V -> X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V ) |
| 89 |
87 88
|
ax-mp |
|- X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V |
| 90 |
89
|
a1i |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V ) |
| 91 |
81 85 66 90
|
fvmptd3 |
|- ( ( ph /\ n e. NN ) -> ( D ` ( n + 1 ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) ) |
| 92 |
8
|
a1i |
|- ( ph -> D = ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) ) |
| 93 |
28
|
elexd |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) e. _V ) |
| 94 |
92 93
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
| 95 |
91 94
|
sseq12d |
|- ( ( ph /\ n e. NN ) -> ( ( D ` ( n + 1 ) ) C_ ( D ` n ) <-> X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) ) |
| 96 |
75 95
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( D ` ( n + 1 ) ) C_ ( D ` n ) ) |
| 97 |
|
1nn |
|- 1 e. NN |
| 98 |
97 12
|
eleqtri |
|- 1 e. ( ZZ>= ` 1 ) |
| 99 |
98
|
a1i |
|- ( ph -> 1 e. ( ZZ>= ` 1 ) ) |
| 100 |
|
fveq2 |
|- ( n = 1 -> ( C ` n ) = ( C ` 1 ) ) |
| 101 |
100
|
fveq1d |
|- ( n = 1 -> ( ( C ` n ) ` k ) = ( ( C ` 1 ) ` k ) ) |
| 102 |
101
|
oveq2d |
|- ( n = 1 -> ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) |
| 103 |
102
|
ixpeq2dv |
|- ( n = 1 -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) |
| 104 |
97
|
a1i |
|- ( ph -> 1 e. NN ) |
| 105 |
|
ovex |
|- ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V |
| 106 |
105
|
rgenw |
|- A. k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V |
| 107 |
|
ixpexg |
|- ( A. k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V -> X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V ) |
| 108 |
106 107
|
ax-mp |
|- X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V |
| 109 |
108
|
a1i |
|- ( ph -> X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V ) |
| 110 |
8 103 104 109
|
fvmptd3 |
|- ( ph -> ( D ` 1 ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) |
| 111 |
110
|
fveq2d |
|- ( ph -> ( ( voln ` X ) ` ( D ` 1 ) ) = ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) ) |
| 112 |
|
nfv |
|- F/ k ph |
| 113 |
|
simpl |
|- ( ( ph /\ k e. X ) -> ph ) |
| 114 |
97
|
a1i |
|- ( ( ph /\ k e. X ) -> 1 e. NN ) |
| 115 |
|
simpr |
|- ( ( ph /\ k e. X ) -> k e. X ) |
| 116 |
97
|
elexi |
|- 1 e. _V |
| 117 |
|
eleq1 |
|- ( n = 1 -> ( n e. NN <-> 1 e. NN ) ) |
| 118 |
117
|
anbi2d |
|- ( n = 1 -> ( ( ph /\ n e. NN ) <-> ( ph /\ 1 e. NN ) ) ) |
| 119 |
118
|
anbi1d |
|- ( n = 1 -> ( ( ( ph /\ n e. NN ) /\ k e. X ) <-> ( ( ph /\ 1 e. NN ) /\ k e. X ) ) ) |
| 120 |
101
|
eleq1d |
|- ( n = 1 -> ( ( ( C ` n ) ` k ) e. RR <-> ( ( C ` 1 ) ` k ) e. RR ) ) |
| 121 |
119 120
|
imbi12d |
|- ( n = 1 -> ( ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR ) <-> ( ( ( ph /\ 1 e. NN ) /\ k e. X ) -> ( ( C ` 1 ) ` k ) e. RR ) ) ) |
| 122 |
116 121 37
|
vtocl |
|- ( ( ( ph /\ 1 e. NN ) /\ k e. X ) -> ( ( C ` 1 ) ` k ) e. RR ) |
| 123 |
113 114 115 122
|
syl21anc |
|- ( ( ph /\ k e. X ) -> ( ( C ` 1 ) ` k ) e. RR ) |
| 124 |
112 1 32 123
|
vonhoire |
|- ( ph -> ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) e. RR ) |
| 125 |
111 124
|
eqeltrd |
|- ( ph -> ( ( voln ` X ) ` ( D ` 1 ) ) e. RR ) |
| 126 |
|
eqid |
|- ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) |
| 127 |
9 10 11 12 29 96 99 125 126
|
meaiininc |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` |^|_ n e. NN ( D ` n ) ) ) |
| 128 |
112 32 16
|
iinhoiicc |
|- ( ph -> |^|_ n e. NN X_ k e. X ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) ) |
| 129 |
36
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) ) |
| 130 |
129
|
ixpeq2dva |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) ) |
| 131 |
94 130
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) ) |
| 132 |
131
|
iineq2dv |
|- ( ph -> |^|_ n e. NN ( D ` n ) = |^|_ n e. NN X_ k e. X ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) ) |
| 133 |
6
|
a1i |
|- ( ph -> I = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) ) |
| 134 |
128 132 133
|
3eqtr4d |
|- ( ph -> |^|_ n e. NN ( D ` n ) = I ) |
| 135 |
134
|
eqcomd |
|- ( ph -> I = |^|_ n e. NN ( D ` n ) ) |
| 136 |
135
|
fveq2d |
|- ( ph -> ( ( voln ` X ) ` I ) = ( ( voln ` X ) ` |^|_ n e. NN ( D ` n ) ) ) |
| 137 |
136
|
eqcomd |
|- ( ph -> ( ( voln ` X ) ` |^|_ n e. NN ( D ` n ) ) = ( ( voln ` X ) ` I ) ) |
| 138 |
127 137
|
breqtrd |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` I ) ) |
| 139 |
|
2fveq3 |
|- ( n = m -> ( ( voln ` X ) ` ( D ` n ) ) = ( ( voln ` X ) ` ( D ` m ) ) ) |
| 140 |
139
|
cbvmptv |
|- ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) |
| 141 |
140
|
a1i |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) ) |
| 142 |
140
|
eqcomi |
|- ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) |
| 143 |
1 2 3 4 5 7 8 142
|
vonicclem1 |
|- ( ph -> ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
| 144 |
141 143
|
eqbrtrd |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
| 145 |
|
climuni |
|- ( ( ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` I ) /\ ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
| 146 |
138 144 145
|
syl2anc |
|- ( ph -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |