| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonicclem2.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | vonicclem2.a |  |-  ( ph -> A : X --> RR ) | 
						
							| 3 |  | vonicclem2.b |  |-  ( ph -> B : X --> RR ) | 
						
							| 4 |  | vonicclem2.n |  |-  ( ph -> X =/= (/) ) | 
						
							| 5 |  | vonicclem2.t |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) | 
						
							| 6 |  | vonicclem2.i |  |-  I = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) | 
						
							| 7 |  | vonicclem2.c |  |-  C = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) | 
						
							| 8 |  | vonicclem2.d |  |-  D = ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) | 
						
							| 9 |  | nfv |  |-  F/ n ph | 
						
							| 10 | 1 | vonmea |  |-  ( ph -> ( voln ` X ) e. Meas ) | 
						
							| 11 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 12 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 13 | 1 | adantr |  |-  ( ( ph /\ n e. NN ) -> X e. Fin ) | 
						
							| 14 |  | eqid |  |-  dom ( voln ` X ) = dom ( voln ` X ) | 
						
							| 15 | 2 | adantr |  |-  ( ( ph /\ n e. NN ) -> A : X --> RR ) | 
						
							| 16 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 17 | 16 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 18 |  | nnrecre |  |-  ( n e. NN -> ( 1 / n ) e. RR ) | 
						
							| 19 | 18 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) | 
						
							| 20 | 17 19 | readdcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / n ) ) e. RR ) | 
						
							| 21 | 20 | fmpttd |  |-  ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) : X --> RR ) | 
						
							| 22 | 7 | a1i |  |-  ( ph -> C = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) ) | 
						
							| 23 | 1 | mptexd |  |-  ( ph -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) e. _V ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) e. _V ) | 
						
							| 25 | 22 24 | fvmpt2d |  |-  ( ( ph /\ n e. NN ) -> ( C ` n ) = ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) | 
						
							| 26 | 25 | feq1d |  |-  ( ( ph /\ n e. NN ) -> ( ( C ` n ) : X --> RR <-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) : X --> RR ) ) | 
						
							| 27 | 21 26 | mpbird |  |-  ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR ) | 
						
							| 28 | 13 14 15 27 | hoimbl |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) e. dom ( voln ` X ) ) | 
						
							| 29 | 28 8 | fmptd |  |-  ( ph -> D : NN --> dom ( voln ` X ) ) | 
						
							| 30 |  | nfv |  |-  F/ k ( ph /\ n e. NN ) | 
						
							| 31 |  | ressxr |  |-  RR C_ RR* | 
						
							| 32 | 2 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 33 | 31 32 | sselid |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. RR* ) | 
						
							| 34 | 33 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR* ) | 
						
							| 35 |  | ovexd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / n ) ) e. _V ) | 
						
							| 36 | 25 35 | fvmpt2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( B ` k ) + ( 1 / n ) ) ) | 
						
							| 37 | 36 20 | eqeltrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR ) | 
						
							| 38 | 37 | rexrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR* ) | 
						
							| 39 | 15 | ffvelcdmda |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 40 | 39 | leidd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) <_ ( A ` k ) ) | 
						
							| 41 |  | 1red |  |-  ( n e. NN -> 1 e. RR ) | 
						
							| 42 |  | nnre |  |-  ( n e. NN -> n e. RR ) | 
						
							| 43 | 42 41 | readdcld |  |-  ( n e. NN -> ( n + 1 ) e. RR ) | 
						
							| 44 |  | peano2nn |  |-  ( n e. NN -> ( n + 1 ) e. NN ) | 
						
							| 45 |  | nnne0 |  |-  ( ( n + 1 ) e. NN -> ( n + 1 ) =/= 0 ) | 
						
							| 46 | 44 45 | syl |  |-  ( n e. NN -> ( n + 1 ) =/= 0 ) | 
						
							| 47 | 41 43 46 | redivcld |  |-  ( n e. NN -> ( 1 / ( n + 1 ) ) e. RR ) | 
						
							| 48 | 47 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / ( n + 1 ) ) e. RR ) | 
						
							| 49 | 42 | ltp1d |  |-  ( n e. NN -> n < ( n + 1 ) ) | 
						
							| 50 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 51 | 44 | nnrpd |  |-  ( n e. NN -> ( n + 1 ) e. RR+ ) | 
						
							| 52 | 50 51 | ltrecd |  |-  ( n e. NN -> ( n < ( n + 1 ) <-> ( 1 / ( n + 1 ) ) < ( 1 / n ) ) ) | 
						
							| 53 | 49 52 | mpbid |  |-  ( n e. NN -> ( 1 / ( n + 1 ) ) < ( 1 / n ) ) | 
						
							| 54 | 47 18 53 | ltled |  |-  ( n e. NN -> ( 1 / ( n + 1 ) ) <_ ( 1 / n ) ) | 
						
							| 55 | 54 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / ( n + 1 ) ) <_ ( 1 / n ) ) | 
						
							| 56 | 48 19 17 55 | leadd2dd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) <_ ( ( B ` k ) + ( 1 / n ) ) ) | 
						
							| 57 |  | oveq2 |  |-  ( n = m -> ( 1 / n ) = ( 1 / m ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( n = m -> ( ( B ` k ) + ( 1 / n ) ) = ( ( B ` k ) + ( 1 / m ) ) ) | 
						
							| 59 | 58 | mpteq2dv |  |-  ( n = m -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) | 
						
							| 60 | 59 | cbvmptv |  |-  ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) = ( m e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) | 
						
							| 61 | 7 60 | eqtri |  |-  C = ( m e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) | 
						
							| 62 |  | oveq2 |  |-  ( m = ( n + 1 ) -> ( 1 / m ) = ( 1 / ( n + 1 ) ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( m = ( n + 1 ) -> ( ( B ` k ) + ( 1 / m ) ) = ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) | 
						
							| 64 | 63 | mpteq2dv |  |-  ( m = ( n + 1 ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) ) | 
						
							| 65 |  | simpr |  |-  ( ( ph /\ n e. NN ) -> n e. NN ) | 
						
							| 66 | 65 | peano2nnd |  |-  ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) | 
						
							| 67 | 13 | mptexd |  |-  ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) e. _V ) | 
						
							| 68 | 61 64 66 67 | fvmptd3 |  |-  ( ( ph /\ n e. NN ) -> ( C ` ( n + 1 ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) ) | 
						
							| 69 |  | ovexd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) e. _V ) | 
						
							| 70 | 68 69 | fvmpt2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) = ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) | 
						
							| 71 | 70 36 | breq12d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) <-> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) <_ ( ( B ` k ) + ( 1 / n ) ) ) ) | 
						
							| 72 | 56 71 | mpbird |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) ) | 
						
							| 73 |  | icossico |  |-  ( ( ( ( A ` k ) e. RR* /\ ( ( C ` n ) ` k ) e. RR* ) /\ ( ( A ` k ) <_ ( A ` k ) /\ ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) ) ) -> ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) C_ ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) | 
						
							| 74 | 34 38 40 72 73 | syl22anc |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) C_ ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) | 
						
							| 75 | 30 74 | ixpssixp |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) | 
						
							| 76 |  | fveq2 |  |-  ( n = m -> ( C ` n ) = ( C ` m ) ) | 
						
							| 77 | 76 | fveq1d |  |-  ( n = m -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) | 
						
							| 78 | 77 | oveq2d |  |-  ( n = m -> ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) ) | 
						
							| 79 | 78 | ixpeq2dv |  |-  ( n = m -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) ) | 
						
							| 80 | 79 | cbvmptv |  |-  ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = ( m e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) ) | 
						
							| 81 | 8 80 | eqtri |  |-  D = ( m e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) ) | 
						
							| 82 |  | fveq2 |  |-  ( m = ( n + 1 ) -> ( C ` m ) = ( C ` ( n + 1 ) ) ) | 
						
							| 83 | 82 | fveq1d |  |-  ( m = ( n + 1 ) -> ( ( C ` m ) ` k ) = ( ( C ` ( n + 1 ) ) ` k ) ) | 
						
							| 84 | 83 | oveq2d |  |-  ( m = ( n + 1 ) -> ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) = ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) ) | 
						
							| 85 | 84 | ixpeq2dv |  |-  ( m = ( n + 1 ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) ) | 
						
							| 86 |  | ovex |  |-  ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V | 
						
							| 87 | 86 | rgenw |  |-  A. k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V | 
						
							| 88 |  | ixpexg |  |-  ( A. k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V -> X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V ) | 
						
							| 89 | 87 88 | ax-mp |  |-  X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V | 
						
							| 90 | 89 | a1i |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V ) | 
						
							| 91 | 81 85 66 90 | fvmptd3 |  |-  ( ( ph /\ n e. NN ) -> ( D ` ( n + 1 ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) ) | 
						
							| 92 | 8 | a1i |  |-  ( ph -> D = ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) ) | 
						
							| 93 | 28 | elexd |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) e. _V ) | 
						
							| 94 | 92 93 | fvmpt2d |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) | 
						
							| 95 | 91 94 | sseq12d |  |-  ( ( ph /\ n e. NN ) -> ( ( D ` ( n + 1 ) ) C_ ( D ` n ) <-> X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) ) | 
						
							| 96 | 75 95 | mpbird |  |-  ( ( ph /\ n e. NN ) -> ( D ` ( n + 1 ) ) C_ ( D ` n ) ) | 
						
							| 97 |  | 1nn |  |-  1 e. NN | 
						
							| 98 | 97 12 | eleqtri |  |-  1 e. ( ZZ>= ` 1 ) | 
						
							| 99 | 98 | a1i |  |-  ( ph -> 1 e. ( ZZ>= ` 1 ) ) | 
						
							| 100 |  | fveq2 |  |-  ( n = 1 -> ( C ` n ) = ( C ` 1 ) ) | 
						
							| 101 | 100 | fveq1d |  |-  ( n = 1 -> ( ( C ` n ) ` k ) = ( ( C ` 1 ) ` k ) ) | 
						
							| 102 | 101 | oveq2d |  |-  ( n = 1 -> ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) | 
						
							| 103 | 102 | ixpeq2dv |  |-  ( n = 1 -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) | 
						
							| 104 | 97 | a1i |  |-  ( ph -> 1 e. NN ) | 
						
							| 105 |  | ovex |  |-  ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V | 
						
							| 106 | 105 | rgenw |  |-  A. k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V | 
						
							| 107 |  | ixpexg |  |-  ( A. k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V -> X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V ) | 
						
							| 108 | 106 107 | ax-mp |  |-  X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V | 
						
							| 109 | 108 | a1i |  |-  ( ph -> X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V ) | 
						
							| 110 | 8 103 104 109 | fvmptd3 |  |-  ( ph -> ( D ` 1 ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) | 
						
							| 111 | 110 | fveq2d |  |-  ( ph -> ( ( voln ` X ) ` ( D ` 1 ) ) = ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) ) | 
						
							| 112 |  | nfv |  |-  F/ k ph | 
						
							| 113 |  | simpl |  |-  ( ( ph /\ k e. X ) -> ph ) | 
						
							| 114 | 97 | a1i |  |-  ( ( ph /\ k e. X ) -> 1 e. NN ) | 
						
							| 115 |  | simpr |  |-  ( ( ph /\ k e. X ) -> k e. X ) | 
						
							| 116 | 97 | elexi |  |-  1 e. _V | 
						
							| 117 |  | eleq1 |  |-  ( n = 1 -> ( n e. NN <-> 1 e. NN ) ) | 
						
							| 118 | 117 | anbi2d |  |-  ( n = 1 -> ( ( ph /\ n e. NN ) <-> ( ph /\ 1 e. NN ) ) ) | 
						
							| 119 | 118 | anbi1d |  |-  ( n = 1 -> ( ( ( ph /\ n e. NN ) /\ k e. X ) <-> ( ( ph /\ 1 e. NN ) /\ k e. X ) ) ) | 
						
							| 120 | 101 | eleq1d |  |-  ( n = 1 -> ( ( ( C ` n ) ` k ) e. RR <-> ( ( C ` 1 ) ` k ) e. RR ) ) | 
						
							| 121 | 119 120 | imbi12d |  |-  ( n = 1 -> ( ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR ) <-> ( ( ( ph /\ 1 e. NN ) /\ k e. X ) -> ( ( C ` 1 ) ` k ) e. RR ) ) ) | 
						
							| 122 | 116 121 37 | vtocl |  |-  ( ( ( ph /\ 1 e. NN ) /\ k e. X ) -> ( ( C ` 1 ) ` k ) e. RR ) | 
						
							| 123 | 113 114 115 122 | syl21anc |  |-  ( ( ph /\ k e. X ) -> ( ( C ` 1 ) ` k ) e. RR ) | 
						
							| 124 | 112 1 32 123 | vonhoire |  |-  ( ph -> ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) e. RR ) | 
						
							| 125 | 111 124 | eqeltrd |  |-  ( ph -> ( ( voln ` X ) ` ( D ` 1 ) ) e. RR ) | 
						
							| 126 |  | eqid |  |-  ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) | 
						
							| 127 | 9 10 11 12 29 96 99 125 126 | meaiininc |  |-  ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` |^|_ n e. NN ( D ` n ) ) ) | 
						
							| 128 | 112 32 16 | iinhoiicc |  |-  ( ph -> |^|_ n e. NN X_ k e. X ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) ) | 
						
							| 129 | 36 | oveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) ) | 
						
							| 130 | 129 | ixpeq2dva |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) ) | 
						
							| 131 | 94 130 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) ) | 
						
							| 132 | 131 | iineq2dv |  |-  ( ph -> |^|_ n e. NN ( D ` n ) = |^|_ n e. NN X_ k e. X ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) ) | 
						
							| 133 | 6 | a1i |  |-  ( ph -> I = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) ) | 
						
							| 134 | 128 132 133 | 3eqtr4d |  |-  ( ph -> |^|_ n e. NN ( D ` n ) = I ) | 
						
							| 135 | 134 | eqcomd |  |-  ( ph -> I = |^|_ n e. NN ( D ` n ) ) | 
						
							| 136 | 135 | fveq2d |  |-  ( ph -> ( ( voln ` X ) ` I ) = ( ( voln ` X ) ` |^|_ n e. NN ( D ` n ) ) ) | 
						
							| 137 | 136 | eqcomd |  |-  ( ph -> ( ( voln ` X ) ` |^|_ n e. NN ( D ` n ) ) = ( ( voln ` X ) ` I ) ) | 
						
							| 138 | 127 137 | breqtrd |  |-  ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` I ) ) | 
						
							| 139 |  | 2fveq3 |  |-  ( n = m -> ( ( voln ` X ) ` ( D ` n ) ) = ( ( voln ` X ) ` ( D ` m ) ) ) | 
						
							| 140 | 139 | cbvmptv |  |-  ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) | 
						
							| 141 | 140 | a1i |  |-  ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) ) | 
						
							| 142 | 140 | eqcomi |  |-  ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) | 
						
							| 143 | 1 2 3 4 5 7 8 142 | vonicclem1 |  |-  ( ph -> ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 144 | 141 143 | eqbrtrd |  |-  ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 145 |  | climuni |  |-  ( ( ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` I ) /\ ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 146 | 138 144 145 | syl2anc |  |-  ( ph -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |