Step |
Hyp |
Ref |
Expression |
1 |
|
vonicclem2.x |
|- ( ph -> X e. Fin ) |
2 |
|
vonicclem2.a |
|- ( ph -> A : X --> RR ) |
3 |
|
vonicclem2.b |
|- ( ph -> B : X --> RR ) |
4 |
|
vonicclem2.n |
|- ( ph -> X =/= (/) ) |
5 |
|
vonicclem2.t |
|- ( ( ph /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) |
6 |
|
vonicclem2.i |
|- I = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) |
7 |
|
vonicclem2.c |
|- C = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) |
8 |
|
vonicclem2.d |
|- D = ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
9 |
|
nfv |
|- F/ n ph |
10 |
1
|
vonmea |
|- ( ph -> ( voln ` X ) e. Meas ) |
11 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
12 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
13 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. Fin ) |
14 |
|
eqid |
|- dom ( voln ` X ) = dom ( voln ` X ) |
15 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> A : X --> RR ) |
16 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
17 |
16
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR ) |
18 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
19 |
18
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) |
20 |
17 19
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / n ) ) e. RR ) |
21 |
20
|
fmpttd |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) : X --> RR ) |
22 |
7
|
a1i |
|- ( ph -> C = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) ) |
23 |
1
|
mptexd |
|- ( ph -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) e. _V ) |
24 |
23
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) e. _V ) |
25 |
22 24
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) = ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) |
26 |
25
|
feq1d |
|- ( ( ph /\ n e. NN ) -> ( ( C ` n ) : X --> RR <-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) : X --> RR ) ) |
27 |
21 26
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR ) |
28 |
13 14 15 27
|
hoimbl |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) e. dom ( voln ` X ) ) |
29 |
28 8
|
fmptd |
|- ( ph -> D : NN --> dom ( voln ` X ) ) |
30 |
|
nfv |
|- F/ k ( ph /\ n e. NN ) |
31 |
|
ressxr |
|- RR C_ RR* |
32 |
2
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
33 |
31 32
|
sselid |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR* ) |
34 |
33
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR* ) |
35 |
|
ovexd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / n ) ) e. _V ) |
36 |
25 35
|
fvmpt2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( B ` k ) + ( 1 / n ) ) ) |
37 |
36 20
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR ) |
38 |
37
|
rexrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR* ) |
39 |
15
|
ffvelrnda |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR ) |
40 |
39
|
leidd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) <_ ( A ` k ) ) |
41 |
|
1red |
|- ( n e. NN -> 1 e. RR ) |
42 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
43 |
42 41
|
readdcld |
|- ( n e. NN -> ( n + 1 ) e. RR ) |
44 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
45 |
|
nnne0 |
|- ( ( n + 1 ) e. NN -> ( n + 1 ) =/= 0 ) |
46 |
44 45
|
syl |
|- ( n e. NN -> ( n + 1 ) =/= 0 ) |
47 |
41 43 46
|
redivcld |
|- ( n e. NN -> ( 1 / ( n + 1 ) ) e. RR ) |
48 |
47
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / ( n + 1 ) ) e. RR ) |
49 |
42
|
ltp1d |
|- ( n e. NN -> n < ( n + 1 ) ) |
50 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
51 |
44
|
nnrpd |
|- ( n e. NN -> ( n + 1 ) e. RR+ ) |
52 |
50 51
|
ltrecd |
|- ( n e. NN -> ( n < ( n + 1 ) <-> ( 1 / ( n + 1 ) ) < ( 1 / n ) ) ) |
53 |
49 52
|
mpbid |
|- ( n e. NN -> ( 1 / ( n + 1 ) ) < ( 1 / n ) ) |
54 |
47 18 53
|
ltled |
|- ( n e. NN -> ( 1 / ( n + 1 ) ) <_ ( 1 / n ) ) |
55 |
54
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / ( n + 1 ) ) <_ ( 1 / n ) ) |
56 |
48 19 17 55
|
leadd2dd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) <_ ( ( B ` k ) + ( 1 / n ) ) ) |
57 |
|
oveq2 |
|- ( n = m -> ( 1 / n ) = ( 1 / m ) ) |
58 |
57
|
oveq2d |
|- ( n = m -> ( ( B ` k ) + ( 1 / n ) ) = ( ( B ` k ) + ( 1 / m ) ) ) |
59 |
58
|
mpteq2dv |
|- ( n = m -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) |
60 |
59
|
cbvmptv |
|- ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) = ( m e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) |
61 |
7 60
|
eqtri |
|- C = ( m e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) ) |
62 |
|
oveq2 |
|- ( m = ( n + 1 ) -> ( 1 / m ) = ( 1 / ( n + 1 ) ) ) |
63 |
62
|
oveq2d |
|- ( m = ( n + 1 ) -> ( ( B ` k ) + ( 1 / m ) ) = ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) |
64 |
63
|
mpteq2dv |
|- ( m = ( n + 1 ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) ) |
65 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
66 |
65
|
peano2nnd |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) |
67 |
13
|
mptexd |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) e. _V ) |
68 |
61 64 66 67
|
fvmptd3 |
|- ( ( ph /\ n e. NN ) -> ( C ` ( n + 1 ) ) = ( k e. X |-> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) ) |
69 |
|
ovexd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) e. _V ) |
70 |
68 69
|
fvmpt2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) = ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) ) |
71 |
70 36
|
breq12d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) <-> ( ( B ` k ) + ( 1 / ( n + 1 ) ) ) <_ ( ( B ` k ) + ( 1 / n ) ) ) ) |
72 |
56 71
|
mpbird |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) ) |
73 |
|
icossico |
|- ( ( ( ( A ` k ) e. RR* /\ ( ( C ` n ) ` k ) e. RR* ) /\ ( ( A ` k ) <_ ( A ` k ) /\ ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) ) ) -> ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) C_ ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
74 |
34 38 40 72 73
|
syl22anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) C_ ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
75 |
30 74
|
ixpssixp |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
76 |
|
fveq2 |
|- ( n = m -> ( C ` n ) = ( C ` m ) ) |
77 |
76
|
fveq1d |
|- ( n = m -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) |
78 |
77
|
oveq2d |
|- ( n = m -> ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) ) |
79 |
78
|
ixpeq2dv |
|- ( n = m -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) ) |
80 |
79
|
cbvmptv |
|- ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = ( m e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) ) |
81 |
8 80
|
eqtri |
|- D = ( m e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) ) |
82 |
|
fveq2 |
|- ( m = ( n + 1 ) -> ( C ` m ) = ( C ` ( n + 1 ) ) ) |
83 |
82
|
fveq1d |
|- ( m = ( n + 1 ) -> ( ( C ` m ) ` k ) = ( ( C ` ( n + 1 ) ) ` k ) ) |
84 |
83
|
oveq2d |
|- ( m = ( n + 1 ) -> ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) = ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) ) |
85 |
84
|
ixpeq2dv |
|- ( m = ( n + 1 ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` m ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) ) |
86 |
|
ovex |
|- ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V |
87 |
86
|
rgenw |
|- A. k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V |
88 |
|
ixpexg |
|- ( A. k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V -> X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V ) |
89 |
87 88
|
ax-mp |
|- X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V |
90 |
89
|
a1i |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) e. _V ) |
91 |
81 85 66 90
|
fvmptd3 |
|- ( ( ph /\ n e. NN ) -> ( D ` ( n + 1 ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) ) |
92 |
8
|
a1i |
|- ( ph -> D = ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) ) |
93 |
28
|
elexd |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) e. _V ) |
94 |
92 93
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
95 |
91 94
|
sseq12d |
|- ( ( ph /\ n e. NN ) -> ( ( D ` ( n + 1 ) ) C_ ( D ` n ) <-> X_ k e. X ( ( A ` k ) [,) ( ( C ` ( n + 1 ) ) ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) ) |
96 |
75 95
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( D ` ( n + 1 ) ) C_ ( D ` n ) ) |
97 |
|
1nn |
|- 1 e. NN |
98 |
97 12
|
eleqtri |
|- 1 e. ( ZZ>= ` 1 ) |
99 |
98
|
a1i |
|- ( ph -> 1 e. ( ZZ>= ` 1 ) ) |
100 |
|
fveq2 |
|- ( n = 1 -> ( C ` n ) = ( C ` 1 ) ) |
101 |
100
|
fveq1d |
|- ( n = 1 -> ( ( C ` n ) ` k ) = ( ( C ` 1 ) ` k ) ) |
102 |
101
|
oveq2d |
|- ( n = 1 -> ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) |
103 |
102
|
ixpeq2dv |
|- ( n = 1 -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) |
104 |
97
|
a1i |
|- ( ph -> 1 e. NN ) |
105 |
|
ovex |
|- ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V |
106 |
105
|
rgenw |
|- A. k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V |
107 |
|
ixpexg |
|- ( A. k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V -> X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V ) |
108 |
106 107
|
ax-mp |
|- X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V |
109 |
108
|
a1i |
|- ( ph -> X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) e. _V ) |
110 |
8 103 104 109
|
fvmptd3 |
|- ( ph -> ( D ` 1 ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) |
111 |
110
|
fveq2d |
|- ( ph -> ( ( voln ` X ) ` ( D ` 1 ) ) = ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) ) |
112 |
|
nfv |
|- F/ k ph |
113 |
|
simpl |
|- ( ( ph /\ k e. X ) -> ph ) |
114 |
97
|
a1i |
|- ( ( ph /\ k e. X ) -> 1 e. NN ) |
115 |
|
simpr |
|- ( ( ph /\ k e. X ) -> k e. X ) |
116 |
97
|
elexi |
|- 1 e. _V |
117 |
|
eleq1 |
|- ( n = 1 -> ( n e. NN <-> 1 e. NN ) ) |
118 |
117
|
anbi2d |
|- ( n = 1 -> ( ( ph /\ n e. NN ) <-> ( ph /\ 1 e. NN ) ) ) |
119 |
118
|
anbi1d |
|- ( n = 1 -> ( ( ( ph /\ n e. NN ) /\ k e. X ) <-> ( ( ph /\ 1 e. NN ) /\ k e. X ) ) ) |
120 |
101
|
eleq1d |
|- ( n = 1 -> ( ( ( C ` n ) ` k ) e. RR <-> ( ( C ` 1 ) ` k ) e. RR ) ) |
121 |
119 120
|
imbi12d |
|- ( n = 1 -> ( ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR ) <-> ( ( ( ph /\ 1 e. NN ) /\ k e. X ) -> ( ( C ` 1 ) ` k ) e. RR ) ) ) |
122 |
116 121 37
|
vtocl |
|- ( ( ( ph /\ 1 e. NN ) /\ k e. X ) -> ( ( C ` 1 ) ` k ) e. RR ) |
123 |
113 114 115 122
|
syl21anc |
|- ( ( ph /\ k e. X ) -> ( ( C ` 1 ) ` k ) e. RR ) |
124 |
112 1 32 123
|
vonhoire |
|- ( ph -> ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( ( C ` 1 ) ` k ) ) ) e. RR ) |
125 |
111 124
|
eqeltrd |
|- ( ph -> ( ( voln ` X ) ` ( D ` 1 ) ) e. RR ) |
126 |
|
eqid |
|- ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) |
127 |
9 10 11 12 29 96 99 125 126
|
meaiininc |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` |^|_ n e. NN ( D ` n ) ) ) |
128 |
112 32 16
|
iinhoiicc |
|- ( ph -> |^|_ n e. NN X_ k e. X ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) ) |
129 |
36
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) ) |
130 |
129
|
ixpeq2dva |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) ) |
131 |
94 130
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) ) |
132 |
131
|
iineq2dv |
|- ( ph -> |^|_ n e. NN ( D ` n ) = |^|_ n e. NN X_ k e. X ( ( A ` k ) [,) ( ( B ` k ) + ( 1 / n ) ) ) ) |
133 |
6
|
a1i |
|- ( ph -> I = X_ k e. X ( ( A ` k ) [,] ( B ` k ) ) ) |
134 |
128 132 133
|
3eqtr4d |
|- ( ph -> |^|_ n e. NN ( D ` n ) = I ) |
135 |
134
|
eqcomd |
|- ( ph -> I = |^|_ n e. NN ( D ` n ) ) |
136 |
135
|
fveq2d |
|- ( ph -> ( ( voln ` X ) ` I ) = ( ( voln ` X ) ` |^|_ n e. NN ( D ` n ) ) ) |
137 |
136
|
eqcomd |
|- ( ph -> ( ( voln ` X ) ` |^|_ n e. NN ( D ` n ) ) = ( ( voln ` X ) ` I ) ) |
138 |
127 137
|
breqtrd |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` I ) ) |
139 |
|
2fveq3 |
|- ( n = m -> ( ( voln ` X ) ` ( D ` n ) ) = ( ( voln ` X ) ` ( D ` m ) ) ) |
140 |
139
|
cbvmptv |
|- ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) |
141 |
140
|
a1i |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) ) |
142 |
140
|
eqcomi |
|- ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) |
143 |
1 2 3 4 5 7 8 142
|
vonicclem1 |
|- ( ph -> ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
144 |
141 143
|
eqbrtrd |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
145 |
|
climuni |
|- ( ( ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` I ) /\ ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
146 |
138 144 145
|
syl2anc |
|- ( ph -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |