| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonhoire.n |
|- F/ k ph |
| 2 |
|
vonhoire.x |
|- ( ph -> X e. Fin ) |
| 3 |
|
vonhoire.a |
|- ( ( ph /\ k e. X ) -> A e. RR ) |
| 4 |
|
vonhoire.b |
|- ( ( ph /\ k e. X ) -> B e. RR ) |
| 5 |
|
fveq2 |
|- ( X = (/) -> ( voln ` X ) = ( voln ` (/) ) ) |
| 6 |
5
|
fveq1d |
|- ( X = (/) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = ( ( voln ` (/) ) ` X_ k e. X ( A [,) B ) ) ) |
| 7 |
6
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = ( ( voln ` (/) ) ` X_ k e. X ( A [,) B ) ) ) |
| 8 |
|
ixpeq1 |
|- ( X = (/) -> X_ k e. X ( A [,) B ) = X_ k e. (/) ( A [,) B ) ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ X = (/) ) -> X_ k e. X ( A [,) B ) = X_ k e. (/) ( A [,) B ) ) |
| 10 |
|
0fi |
|- (/) e. Fin |
| 11 |
10
|
a1i |
|- ( ph -> (/) e. Fin ) |
| 12 |
|
eqid |
|- dom ( voln ` (/) ) = dom ( voln ` (/) ) |
| 13 |
|
noel |
|- -. k e. (/) |
| 14 |
13
|
pm2.21i |
|- ( k e. (/) -> A e. RR ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ k e. (/) ) -> A e. RR ) |
| 16 |
13
|
pm2.21i |
|- ( k e. (/) -> B e. RR ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ k e. (/) ) -> B e. RR ) |
| 18 |
1 11 12 15 17
|
hoimbl2 |
|- ( ph -> X_ k e. (/) ( A [,) B ) e. dom ( voln ` (/) ) ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ X = (/) ) -> X_ k e. (/) ( A [,) B ) e. dom ( voln ` (/) ) ) |
| 20 |
9 19
|
eqeltrd |
|- ( ( ph /\ X = (/) ) -> X_ k e. X ( A [,) B ) e. dom ( voln ` (/) ) ) |
| 21 |
20
|
von0val |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` (/) ) ` X_ k e. X ( A [,) B ) ) = 0 ) |
| 22 |
7 21
|
eqtrd |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = 0 ) |
| 23 |
|
0red |
|- ( ( ph /\ X = (/) ) -> 0 e. RR ) |
| 24 |
22 23
|
eqeltrd |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) e. RR ) |
| 25 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
| 26 |
25
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> X =/= (/) ) |
| 27 |
|
simpr |
|- ( ( ph /\ j e. X ) -> j e. X ) |
| 28 |
|
nfv |
|- F/ k j e. X |
| 29 |
1 28
|
nfan |
|- F/ k ( ph /\ j e. X ) |
| 30 |
|
nfcv |
|- F/_ k j |
| 31 |
30
|
nfcsb1 |
|- F/_ k [_ j / k ]_ A |
| 32 |
31
|
nfel1 |
|- F/ k [_ j / k ]_ A e. RR |
| 33 |
29 32
|
nfim |
|- F/ k ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) |
| 34 |
|
eleq1w |
|- ( k = j -> ( k e. X <-> j e. X ) ) |
| 35 |
34
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. X ) <-> ( ph /\ j e. X ) ) ) |
| 36 |
|
csbeq1a |
|- ( k = j -> A = [_ j / k ]_ A ) |
| 37 |
36
|
eleq1d |
|- ( k = j -> ( A e. RR <-> [_ j / k ]_ A e. RR ) ) |
| 38 |
35 37
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. X ) -> A e. RR ) <-> ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) ) ) |
| 39 |
33 38 3
|
chvarfv |
|- ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) |
| 40 |
|
eqid |
|- ( k e. X |-> A ) = ( k e. X |-> A ) |
| 41 |
30 31 36 40
|
fvmptf |
|- ( ( j e. X /\ [_ j / k ]_ A e. RR ) -> ( ( k e. X |-> A ) ` j ) = [_ j / k ]_ A ) |
| 42 |
27 39 41
|
syl2anc |
|- ( ( ph /\ j e. X ) -> ( ( k e. X |-> A ) ` j ) = [_ j / k ]_ A ) |
| 43 |
30
|
nfcsb1 |
|- F/_ k [_ j / k ]_ B |
| 44 |
|
nfcv |
|- F/_ k RR |
| 45 |
43 44
|
nfel |
|- F/ k [_ j / k ]_ B e. RR |
| 46 |
29 45
|
nfim |
|- F/ k ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) |
| 47 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
| 48 |
47
|
eleq1d |
|- ( k = j -> ( B e. RR <-> [_ j / k ]_ B e. RR ) ) |
| 49 |
35 48
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. X ) -> B e. RR ) <-> ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) ) ) |
| 50 |
46 49 4
|
chvarfv |
|- ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) |
| 51 |
|
eqid |
|- ( k e. X |-> B ) = ( k e. X |-> B ) |
| 52 |
30 43 47 51
|
fvmptf |
|- ( ( j e. X /\ [_ j / k ]_ B e. RR ) -> ( ( k e. X |-> B ) ` j ) = [_ j / k ]_ B ) |
| 53 |
27 50 52
|
syl2anc |
|- ( ( ph /\ j e. X ) -> ( ( k e. X |-> B ) ` j ) = [_ j / k ]_ B ) |
| 54 |
42 53
|
oveq12d |
|- ( ( ph /\ j e. X ) -> ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) |
| 55 |
54
|
ixpeq2dva |
|- ( ph -> X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) |
| 56 |
|
nfcv |
|- F/_ j ( A [,) B ) |
| 57 |
|
nfcv |
|- F/_ k [,) |
| 58 |
31 57 43
|
nfov |
|- F/_ k ( [_ j / k ]_ A [,) [_ j / k ]_ B ) |
| 59 |
36 47
|
oveq12d |
|- ( k = j -> ( A [,) B ) = ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) |
| 60 |
56 58 59
|
cbvixp |
|- X_ k e. X ( A [,) B ) = X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) |
| 61 |
60
|
eqcomi |
|- X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) = X_ k e. X ( A [,) B ) |
| 62 |
61
|
a1i |
|- ( ph -> X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) = X_ k e. X ( A [,) B ) ) |
| 63 |
55 62
|
eqtr2d |
|- ( ph -> X_ k e. X ( A [,) B ) = X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) |
| 64 |
63
|
fveq2d |
|- ( ph -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = ( ( voln ` X ) ` X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = ( ( voln ` X ) ` X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) ) |
| 66 |
2
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> X e. Fin ) |
| 67 |
|
simpr |
|- ( ( ph /\ X =/= (/) ) -> X =/= (/) ) |
| 68 |
1 3 40
|
fmptdf |
|- ( ph -> ( k e. X |-> A ) : X --> RR ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> ( k e. X |-> A ) : X --> RR ) |
| 70 |
1 4 51
|
fmptdf |
|- ( ph -> ( k e. X |-> B ) : X --> RR ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> ( k e. X |-> B ) : X --> RR ) |
| 72 |
|
eqid |
|- X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) |
| 73 |
66 67 69 71 72
|
vonn0hoi |
|- ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) = prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) ) |
| 74 |
65 73
|
eqtrd |
|- ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) ) |
| 75 |
42 39
|
eqeltrd |
|- ( ( ph /\ j e. X ) -> ( ( k e. X |-> A ) ` j ) e. RR ) |
| 76 |
53 50
|
eqeltrd |
|- ( ( ph /\ j e. X ) -> ( ( k e. X |-> B ) ` j ) e. RR ) |
| 77 |
|
volicore |
|- ( ( ( ( k e. X |-> A ) ` j ) e. RR /\ ( ( k e. X |-> B ) ` j ) e. RR ) -> ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) e. RR ) |
| 78 |
75 76 77
|
syl2anc |
|- ( ( ph /\ j e. X ) -> ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) e. RR ) |
| 79 |
2 78
|
fprodrecl |
|- ( ph -> prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) e. RR ) |
| 80 |
79
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) e. RR ) |
| 81 |
74 80
|
eqeltrd |
|- ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) e. RR ) |
| 82 |
26 81
|
syldan |
|- ( ( ph /\ -. X = (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) e. RR ) |
| 83 |
24 82
|
pm2.61dan |
|- ( ph -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) e. RR ) |