Step |
Hyp |
Ref |
Expression |
1 |
|
vonhoire.n |
|- F/ k ph |
2 |
|
vonhoire.x |
|- ( ph -> X e. Fin ) |
3 |
|
vonhoire.a |
|- ( ( ph /\ k e. X ) -> A e. RR ) |
4 |
|
vonhoire.b |
|- ( ( ph /\ k e. X ) -> B e. RR ) |
5 |
|
fveq2 |
|- ( X = (/) -> ( voln ` X ) = ( voln ` (/) ) ) |
6 |
5
|
fveq1d |
|- ( X = (/) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = ( ( voln ` (/) ) ` X_ k e. X ( A [,) B ) ) ) |
7 |
6
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = ( ( voln ` (/) ) ` X_ k e. X ( A [,) B ) ) ) |
8 |
|
ixpeq1 |
|- ( X = (/) -> X_ k e. X ( A [,) B ) = X_ k e. (/) ( A [,) B ) ) |
9 |
8
|
adantl |
|- ( ( ph /\ X = (/) ) -> X_ k e. X ( A [,) B ) = X_ k e. (/) ( A [,) B ) ) |
10 |
|
0fin |
|- (/) e. Fin |
11 |
10
|
a1i |
|- ( ph -> (/) e. Fin ) |
12 |
|
eqid |
|- dom ( voln ` (/) ) = dom ( voln ` (/) ) |
13 |
|
noel |
|- -. k e. (/) |
14 |
13
|
pm2.21i |
|- ( k e. (/) -> A e. RR ) |
15 |
14
|
adantl |
|- ( ( ph /\ k e. (/) ) -> A e. RR ) |
16 |
13
|
pm2.21i |
|- ( k e. (/) -> B e. RR ) |
17 |
16
|
adantl |
|- ( ( ph /\ k e. (/) ) -> B e. RR ) |
18 |
1 11 12 15 17
|
hoimbl2 |
|- ( ph -> X_ k e. (/) ( A [,) B ) e. dom ( voln ` (/) ) ) |
19 |
18
|
adantr |
|- ( ( ph /\ X = (/) ) -> X_ k e. (/) ( A [,) B ) e. dom ( voln ` (/) ) ) |
20 |
9 19
|
eqeltrd |
|- ( ( ph /\ X = (/) ) -> X_ k e. X ( A [,) B ) e. dom ( voln ` (/) ) ) |
21 |
20
|
von0val |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` (/) ) ` X_ k e. X ( A [,) B ) ) = 0 ) |
22 |
7 21
|
eqtrd |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = 0 ) |
23 |
|
0red |
|- ( ( ph /\ X = (/) ) -> 0 e. RR ) |
24 |
22 23
|
eqeltrd |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) e. RR ) |
25 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
26 |
25
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> X =/= (/) ) |
27 |
|
simpr |
|- ( ( ph /\ j e. X ) -> j e. X ) |
28 |
|
nfv |
|- F/ k j e. X |
29 |
1 28
|
nfan |
|- F/ k ( ph /\ j e. X ) |
30 |
|
nfcv |
|- F/_ k j |
31 |
30
|
nfcsb1 |
|- F/_ k [_ j / k ]_ A |
32 |
31
|
nfel1 |
|- F/ k [_ j / k ]_ A e. RR |
33 |
29 32
|
nfim |
|- F/ k ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) |
34 |
|
eleq1w |
|- ( k = j -> ( k e. X <-> j e. X ) ) |
35 |
34
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. X ) <-> ( ph /\ j e. X ) ) ) |
36 |
|
csbeq1a |
|- ( k = j -> A = [_ j / k ]_ A ) |
37 |
36
|
eleq1d |
|- ( k = j -> ( A e. RR <-> [_ j / k ]_ A e. RR ) ) |
38 |
35 37
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. X ) -> A e. RR ) <-> ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) ) ) |
39 |
33 38 3
|
chvarfv |
|- ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) |
40 |
|
eqid |
|- ( k e. X |-> A ) = ( k e. X |-> A ) |
41 |
30 31 36 40
|
fvmptf |
|- ( ( j e. X /\ [_ j / k ]_ A e. RR ) -> ( ( k e. X |-> A ) ` j ) = [_ j / k ]_ A ) |
42 |
27 39 41
|
syl2anc |
|- ( ( ph /\ j e. X ) -> ( ( k e. X |-> A ) ` j ) = [_ j / k ]_ A ) |
43 |
30
|
nfcsb1 |
|- F/_ k [_ j / k ]_ B |
44 |
|
nfcv |
|- F/_ k RR |
45 |
43 44
|
nfel |
|- F/ k [_ j / k ]_ B e. RR |
46 |
29 45
|
nfim |
|- F/ k ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) |
47 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
48 |
47
|
eleq1d |
|- ( k = j -> ( B e. RR <-> [_ j / k ]_ B e. RR ) ) |
49 |
35 48
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. X ) -> B e. RR ) <-> ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) ) ) |
50 |
46 49 4
|
chvarfv |
|- ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) |
51 |
|
eqid |
|- ( k e. X |-> B ) = ( k e. X |-> B ) |
52 |
30 43 47 51
|
fvmptf |
|- ( ( j e. X /\ [_ j / k ]_ B e. RR ) -> ( ( k e. X |-> B ) ` j ) = [_ j / k ]_ B ) |
53 |
27 50 52
|
syl2anc |
|- ( ( ph /\ j e. X ) -> ( ( k e. X |-> B ) ` j ) = [_ j / k ]_ B ) |
54 |
42 53
|
oveq12d |
|- ( ( ph /\ j e. X ) -> ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) |
55 |
54
|
ixpeq2dva |
|- ( ph -> X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) |
56 |
|
nfcv |
|- F/_ j ( A [,) B ) |
57 |
|
nfcv |
|- F/_ k [,) |
58 |
31 57 43
|
nfov |
|- F/_ k ( [_ j / k ]_ A [,) [_ j / k ]_ B ) |
59 |
36 47
|
oveq12d |
|- ( k = j -> ( A [,) B ) = ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) |
60 |
56 58 59
|
cbvixp |
|- X_ k e. X ( A [,) B ) = X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) |
61 |
60
|
eqcomi |
|- X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) = X_ k e. X ( A [,) B ) |
62 |
61
|
a1i |
|- ( ph -> X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) = X_ k e. X ( A [,) B ) ) |
63 |
55 62
|
eqtr2d |
|- ( ph -> X_ k e. X ( A [,) B ) = X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) |
64 |
63
|
fveq2d |
|- ( ph -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = ( ( voln ` X ) ` X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) ) |
65 |
64
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = ( ( voln ` X ) ` X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) ) |
66 |
2
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> X e. Fin ) |
67 |
|
simpr |
|- ( ( ph /\ X =/= (/) ) -> X =/= (/) ) |
68 |
1 3 40
|
fmptdf |
|- ( ph -> ( k e. X |-> A ) : X --> RR ) |
69 |
68
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> ( k e. X |-> A ) : X --> RR ) |
70 |
1 4 51
|
fmptdf |
|- ( ph -> ( k e. X |-> B ) : X --> RR ) |
71 |
70
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> ( k e. X |-> B ) : X --> RR ) |
72 |
|
eqid |
|- X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) |
73 |
66 67 69 71 72
|
vonn0hoi |
|- ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) = prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) ) |
74 |
65 73
|
eqtrd |
|- ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) ) |
75 |
42 39
|
eqeltrd |
|- ( ( ph /\ j e. X ) -> ( ( k e. X |-> A ) ` j ) e. RR ) |
76 |
53 50
|
eqeltrd |
|- ( ( ph /\ j e. X ) -> ( ( k e. X |-> B ) ` j ) e. RR ) |
77 |
|
volicore |
|- ( ( ( ( k e. X |-> A ) ` j ) e. RR /\ ( ( k e. X |-> B ) ` j ) e. RR ) -> ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) e. RR ) |
78 |
75 76 77
|
syl2anc |
|- ( ( ph /\ j e. X ) -> ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) e. RR ) |
79 |
2 78
|
fprodrecl |
|- ( ph -> prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) e. RR ) |
80 |
79
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) e. RR ) |
81 |
74 80
|
eqeltrd |
|- ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) e. RR ) |
82 |
26 81
|
syldan |
|- ( ( ph /\ -. X = (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) e. RR ) |
83 |
24 82
|
pm2.61dan |
|- ( ph -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) e. RR ) |