| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonhoire.n |  |-  F/ k ph | 
						
							| 2 |  | vonhoire.x |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | vonhoire.a |  |-  ( ( ph /\ k e. X ) -> A e. RR ) | 
						
							| 4 |  | vonhoire.b |  |-  ( ( ph /\ k e. X ) -> B e. RR ) | 
						
							| 5 |  | fveq2 |  |-  ( X = (/) -> ( voln ` X ) = ( voln ` (/) ) ) | 
						
							| 6 | 5 | fveq1d |  |-  ( X = (/) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = ( ( voln ` (/) ) ` X_ k e. X ( A [,) B ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = ( ( voln ` (/) ) ` X_ k e. X ( A [,) B ) ) ) | 
						
							| 8 |  | ixpeq1 |  |-  ( X = (/) -> X_ k e. X ( A [,) B ) = X_ k e. (/) ( A [,) B ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ph /\ X = (/) ) -> X_ k e. X ( A [,) B ) = X_ k e. (/) ( A [,) B ) ) | 
						
							| 10 |  | 0fi |  |-  (/) e. Fin | 
						
							| 11 | 10 | a1i |  |-  ( ph -> (/) e. Fin ) | 
						
							| 12 |  | eqid |  |-  dom ( voln ` (/) ) = dom ( voln ` (/) ) | 
						
							| 13 |  | noel |  |-  -. k e. (/) | 
						
							| 14 | 13 | pm2.21i |  |-  ( k e. (/) -> A e. RR ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ k e. (/) ) -> A e. RR ) | 
						
							| 16 | 13 | pm2.21i |  |-  ( k e. (/) -> B e. RR ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ k e. (/) ) -> B e. RR ) | 
						
							| 18 | 1 11 12 15 17 | hoimbl2 |  |-  ( ph -> X_ k e. (/) ( A [,) B ) e. dom ( voln ` (/) ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ X = (/) ) -> X_ k e. (/) ( A [,) B ) e. dom ( voln ` (/) ) ) | 
						
							| 20 | 9 19 | eqeltrd |  |-  ( ( ph /\ X = (/) ) -> X_ k e. X ( A [,) B ) e. dom ( voln ` (/) ) ) | 
						
							| 21 | 20 | von0val |  |-  ( ( ph /\ X = (/) ) -> ( ( voln ` (/) ) ` X_ k e. X ( A [,) B ) ) = 0 ) | 
						
							| 22 | 7 21 | eqtrd |  |-  ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = 0 ) | 
						
							| 23 |  | 0red |  |-  ( ( ph /\ X = (/) ) -> 0 e. RR ) | 
						
							| 24 | 22 23 | eqeltrd |  |-  ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) e. RR ) | 
						
							| 25 |  | neqne |  |-  ( -. X = (/) -> X =/= (/) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ -. X = (/) ) -> X =/= (/) ) | 
						
							| 27 |  | simpr |  |-  ( ( ph /\ j e. X ) -> j e. X ) | 
						
							| 28 |  | nfv |  |-  F/ k j e. X | 
						
							| 29 | 1 28 | nfan |  |-  F/ k ( ph /\ j e. X ) | 
						
							| 30 |  | nfcv |  |-  F/_ k j | 
						
							| 31 | 30 | nfcsb1 |  |-  F/_ k [_ j / k ]_ A | 
						
							| 32 | 31 | nfel1 |  |-  F/ k [_ j / k ]_ A e. RR | 
						
							| 33 | 29 32 | nfim |  |-  F/ k ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) | 
						
							| 34 |  | eleq1w |  |-  ( k = j -> ( k e. X <-> j e. X ) ) | 
						
							| 35 | 34 | anbi2d |  |-  ( k = j -> ( ( ph /\ k e. X ) <-> ( ph /\ j e. X ) ) ) | 
						
							| 36 |  | csbeq1a |  |-  ( k = j -> A = [_ j / k ]_ A ) | 
						
							| 37 | 36 | eleq1d |  |-  ( k = j -> ( A e. RR <-> [_ j / k ]_ A e. RR ) ) | 
						
							| 38 | 35 37 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. X ) -> A e. RR ) <-> ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) ) ) | 
						
							| 39 | 33 38 3 | chvarfv |  |-  ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) | 
						
							| 40 |  | eqid |  |-  ( k e. X |-> A ) = ( k e. X |-> A ) | 
						
							| 41 | 30 31 36 40 | fvmptf |  |-  ( ( j e. X /\ [_ j / k ]_ A e. RR ) -> ( ( k e. X |-> A ) ` j ) = [_ j / k ]_ A ) | 
						
							| 42 | 27 39 41 | syl2anc |  |-  ( ( ph /\ j e. X ) -> ( ( k e. X |-> A ) ` j ) = [_ j / k ]_ A ) | 
						
							| 43 | 30 | nfcsb1 |  |-  F/_ k [_ j / k ]_ B | 
						
							| 44 |  | nfcv |  |-  F/_ k RR | 
						
							| 45 | 43 44 | nfel |  |-  F/ k [_ j / k ]_ B e. RR | 
						
							| 46 | 29 45 | nfim |  |-  F/ k ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) | 
						
							| 47 |  | csbeq1a |  |-  ( k = j -> B = [_ j / k ]_ B ) | 
						
							| 48 | 47 | eleq1d |  |-  ( k = j -> ( B e. RR <-> [_ j / k ]_ B e. RR ) ) | 
						
							| 49 | 35 48 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. X ) -> B e. RR ) <-> ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) ) ) | 
						
							| 50 | 46 49 4 | chvarfv |  |-  ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) | 
						
							| 51 |  | eqid |  |-  ( k e. X |-> B ) = ( k e. X |-> B ) | 
						
							| 52 | 30 43 47 51 | fvmptf |  |-  ( ( j e. X /\ [_ j / k ]_ B e. RR ) -> ( ( k e. X |-> B ) ` j ) = [_ j / k ]_ B ) | 
						
							| 53 | 27 50 52 | syl2anc |  |-  ( ( ph /\ j e. X ) -> ( ( k e. X |-> B ) ` j ) = [_ j / k ]_ B ) | 
						
							| 54 | 42 53 | oveq12d |  |-  ( ( ph /\ j e. X ) -> ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) | 
						
							| 55 | 54 | ixpeq2dva |  |-  ( ph -> X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) | 
						
							| 56 |  | nfcv |  |-  F/_ j ( A [,) B ) | 
						
							| 57 |  | nfcv |  |-  F/_ k [,) | 
						
							| 58 | 31 57 43 | nfov |  |-  F/_ k ( [_ j / k ]_ A [,) [_ j / k ]_ B ) | 
						
							| 59 | 36 47 | oveq12d |  |-  ( k = j -> ( A [,) B ) = ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) | 
						
							| 60 | 56 58 59 | cbvixp |  |-  X_ k e. X ( A [,) B ) = X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) | 
						
							| 61 | 60 | eqcomi |  |-  X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) = X_ k e. X ( A [,) B ) | 
						
							| 62 | 61 | a1i |  |-  ( ph -> X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) = X_ k e. X ( A [,) B ) ) | 
						
							| 63 | 55 62 | eqtr2d |  |-  ( ph -> X_ k e. X ( A [,) B ) = X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) | 
						
							| 64 | 63 | fveq2d |  |-  ( ph -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = ( ( voln ` X ) ` X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = ( ( voln ` X ) ` X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) ) | 
						
							| 66 | 2 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> X e. Fin ) | 
						
							| 67 |  | simpr |  |-  ( ( ph /\ X =/= (/) ) -> X =/= (/) ) | 
						
							| 68 | 1 3 40 | fmptdf |  |-  ( ph -> ( k e. X |-> A ) : X --> RR ) | 
						
							| 69 | 68 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> ( k e. X |-> A ) : X --> RR ) | 
						
							| 70 | 1 4 51 | fmptdf |  |-  ( ph -> ( k e. X |-> B ) : X --> RR ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> ( k e. X |-> B ) : X --> RR ) | 
						
							| 72 |  | eqid |  |-  X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) | 
						
							| 73 | 66 67 69 71 72 | vonn0hoi |  |-  ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) = prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) ) | 
						
							| 74 | 65 73 | eqtrd |  |-  ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) = prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) ) | 
						
							| 75 | 42 39 | eqeltrd |  |-  ( ( ph /\ j e. X ) -> ( ( k e. X |-> A ) ` j ) e. RR ) | 
						
							| 76 | 53 50 | eqeltrd |  |-  ( ( ph /\ j e. X ) -> ( ( k e. X |-> B ) ` j ) e. RR ) | 
						
							| 77 |  | volicore |  |-  ( ( ( ( k e. X |-> A ) ` j ) e. RR /\ ( ( k e. X |-> B ) ` j ) e. RR ) -> ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) e. RR ) | 
						
							| 78 | 75 76 77 | syl2anc |  |-  ( ( ph /\ j e. X ) -> ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) e. RR ) | 
						
							| 79 | 2 78 | fprodrecl |  |-  ( ph -> prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) e. RR ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) e. RR ) | 
						
							| 81 | 74 80 | eqeltrd |  |-  ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) e. RR ) | 
						
							| 82 | 26 81 | syldan |  |-  ( ( ph /\ -. X = (/) ) -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) e. RR ) | 
						
							| 83 | 24 82 | pm2.61dan |  |-  ( ph -> ( ( voln ` X ) ` X_ k e. X ( A [,) B ) ) e. RR ) |