| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iinhoiicclem.k |
|- F/ k ph |
| 2 |
|
iinhoiicclem.a |
|- ( ( ph /\ k e. X ) -> A e. RR ) |
| 3 |
|
iinhoiicclem.b |
|- ( ( ph /\ k e. X ) -> B e. RR ) |
| 4 |
|
iinhoiicclem.f |
|- ( ph -> F e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) |
| 5 |
4
|
elexd |
|- ( ph -> F e. _V ) |
| 6 |
|
1nn |
|- 1 e. NN |
| 7 |
6
|
a1i |
|- ( ph -> 1 e. NN ) |
| 8 |
|
peano2re |
|- ( B e. RR -> ( B + 1 ) e. RR ) |
| 9 |
3 8
|
syl |
|- ( ( ph /\ k e. X ) -> ( B + 1 ) e. RR ) |
| 10 |
9
|
rexrd |
|- ( ( ph /\ k e. X ) -> ( B + 1 ) e. RR* ) |
| 11 |
|
icossre |
|- ( ( A e. RR /\ ( B + 1 ) e. RR* ) -> ( A [,) ( B + 1 ) ) C_ RR ) |
| 12 |
2 10 11
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( A [,) ( B + 1 ) ) C_ RR ) |
| 13 |
1 12
|
ixpssixp |
|- ( ph -> X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X RR ) |
| 14 |
|
oveq2 |
|- ( n = 1 -> ( 1 / n ) = ( 1 / 1 ) ) |
| 15 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 16 |
15
|
a1i |
|- ( n = 1 -> ( 1 / 1 ) = 1 ) |
| 17 |
14 16
|
eqtrd |
|- ( n = 1 -> ( 1 / n ) = 1 ) |
| 18 |
17
|
oveq2d |
|- ( n = 1 -> ( B + ( 1 / n ) ) = ( B + 1 ) ) |
| 19 |
18
|
oveq2d |
|- ( n = 1 -> ( A [,) ( B + ( 1 / n ) ) ) = ( A [,) ( B + 1 ) ) ) |
| 20 |
19
|
ixpeq2dv |
|- ( n = 1 -> X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) = X_ k e. X ( A [,) ( B + 1 ) ) ) |
| 21 |
20
|
sseq1d |
|- ( n = 1 -> ( X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X RR <-> X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X RR ) ) |
| 22 |
21
|
rspcev |
|- ( ( 1 e. NN /\ X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X RR ) -> E. n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X RR ) |
| 23 |
7 13 22
|
syl2anc |
|- ( ph -> E. n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X RR ) |
| 24 |
|
iinss |
|- ( E. n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X RR -> |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X RR ) |
| 25 |
23 24
|
syl |
|- ( ph -> |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X RR ) |
| 26 |
25 4
|
sseldd |
|- ( ph -> F e. X_ k e. X RR ) |
| 27 |
|
elixpconstg |
|- ( F e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) -> ( F e. X_ k e. X RR <-> F : X --> RR ) ) |
| 28 |
4 27
|
syl |
|- ( ph -> ( F e. X_ k e. X RR <-> F : X --> RR ) ) |
| 29 |
26 28
|
mpbid |
|- ( ph -> F : X --> RR ) |
| 30 |
29
|
ffnd |
|- ( ph -> F Fn X ) |
| 31 |
29
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( F ` k ) e. RR ) |
| 32 |
2
|
rexrd |
|- ( ( ph /\ k e. X ) -> A e. RR* ) |
| 33 |
|
ssid |
|- X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) |
| 34 |
33
|
a1i |
|- ( ph -> X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) |
| 35 |
20
|
sseq1d |
|- ( n = 1 -> ( X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) <-> X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) ) |
| 36 |
35
|
rspcev |
|- ( ( 1 e. NN /\ X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) -> E. n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) |
| 37 |
7 34 36
|
syl2anc |
|- ( ph -> E. n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) |
| 38 |
|
iinss |
|- ( E. n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) -> |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) |
| 39 |
37 38
|
syl |
|- ( ph -> |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) |
| 40 |
39 4
|
sseldd |
|- ( ph -> F e. X_ k e. X ( A [,) ( B + 1 ) ) ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ k e. X ) -> F e. X_ k e. X ( A [,) ( B + 1 ) ) ) |
| 42 |
|
simpr |
|- ( ( ph /\ k e. X ) -> k e. X ) |
| 43 |
|
fvixp2 |
|- ( ( F e. X_ k e. X ( A [,) ( B + 1 ) ) /\ k e. X ) -> ( F ` k ) e. ( A [,) ( B + 1 ) ) ) |
| 44 |
41 42 43
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( F ` k ) e. ( A [,) ( B + 1 ) ) ) |
| 45 |
|
icogelb |
|- ( ( A e. RR* /\ ( B + 1 ) e. RR* /\ ( F ` k ) e. ( A [,) ( B + 1 ) ) ) -> A <_ ( F ` k ) ) |
| 46 |
32 10 44 45
|
syl3anc |
|- ( ( ph /\ k e. X ) -> A <_ ( F ` k ) ) |
| 47 |
31
|
adantr |
|- ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( F ` k ) e. RR ) |
| 48 |
3
|
adantr |
|- ( ( ( ph /\ k e. X ) /\ n e. NN ) -> B e. RR ) |
| 49 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
| 50 |
49
|
adantl |
|- ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( 1 / n ) e. RR ) |
| 51 |
48 50
|
readdcld |
|- ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( B + ( 1 / n ) ) e. RR ) |
| 52 |
32
|
adantr |
|- ( ( ( ph /\ k e. X ) /\ n e. NN ) -> A e. RR* ) |
| 53 |
|
ressxr |
|- RR C_ RR* |
| 54 |
53 51
|
sselid |
|- ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( B + ( 1 / n ) ) e. RR* ) |
| 55 |
|
eliin |
|- ( F e. _V -> ( F e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) <-> A. n e. NN F e. X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) ) |
| 56 |
5 55
|
syl |
|- ( ph -> ( F e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) <-> A. n e. NN F e. X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) ) |
| 57 |
4 56
|
mpbid |
|- ( ph -> A. n e. NN F e. X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) |
| 58 |
57
|
r19.21bi |
|- ( ( ph /\ n e. NN ) -> F e. X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) |
| 59 |
|
elixp2 |
|- ( F e. X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) <-> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( A [,) ( B + ( 1 / n ) ) ) ) ) |
| 60 |
58 59
|
sylib |
|- ( ( ph /\ n e. NN ) -> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( A [,) ( B + ( 1 / n ) ) ) ) ) |
| 61 |
60
|
simp3d |
|- ( ( ph /\ n e. NN ) -> A. k e. X ( F ` k ) e. ( A [,) ( B + ( 1 / n ) ) ) ) |
| 62 |
61
|
r19.21bi |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( F ` k ) e. ( A [,) ( B + ( 1 / n ) ) ) ) |
| 63 |
62
|
an32s |
|- ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( F ` k ) e. ( A [,) ( B + ( 1 / n ) ) ) ) |
| 64 |
|
icoltub |
|- ( ( A e. RR* /\ ( B + ( 1 / n ) ) e. RR* /\ ( F ` k ) e. ( A [,) ( B + ( 1 / n ) ) ) ) -> ( F ` k ) < ( B + ( 1 / n ) ) ) |
| 65 |
52 54 63 64
|
syl3anc |
|- ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( F ` k ) < ( B + ( 1 / n ) ) ) |
| 66 |
47 51 65
|
ltled |
|- ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( F ` k ) <_ ( B + ( 1 / n ) ) ) |
| 67 |
66
|
ralrimiva |
|- ( ( ph /\ k e. X ) -> A. n e. NN ( F ` k ) <_ ( B + ( 1 / n ) ) ) |
| 68 |
|
nfv |
|- F/ n ( ph /\ k e. X ) |
| 69 |
53 31
|
sselid |
|- ( ( ph /\ k e. X ) -> ( F ` k ) e. RR* ) |
| 70 |
68 69 3
|
xrralrecnnle |
|- ( ( ph /\ k e. X ) -> ( ( F ` k ) <_ B <-> A. n e. NN ( F ` k ) <_ ( B + ( 1 / n ) ) ) ) |
| 71 |
67 70
|
mpbird |
|- ( ( ph /\ k e. X ) -> ( F ` k ) <_ B ) |
| 72 |
2 3 31 46 71
|
eliccd |
|- ( ( ph /\ k e. X ) -> ( F ` k ) e. ( A [,] B ) ) |
| 73 |
72
|
ex |
|- ( ph -> ( k e. X -> ( F ` k ) e. ( A [,] B ) ) ) |
| 74 |
1 73
|
ralrimi |
|- ( ph -> A. k e. X ( F ` k ) e. ( A [,] B ) ) |
| 75 |
5 30 74
|
3jca |
|- ( ph -> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( A [,] B ) ) ) |
| 76 |
|
elixp2 |
|- ( F e. X_ k e. X ( A [,] B ) <-> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( A [,] B ) ) ) |
| 77 |
75 76
|
sylibr |
|- ( ph -> F e. X_ k e. X ( A [,] B ) ) |