| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iinhoiicclem.k |  |-  F/ k ph | 
						
							| 2 |  | iinhoiicclem.a |  |-  ( ( ph /\ k e. X ) -> A e. RR ) | 
						
							| 3 |  | iinhoiicclem.b |  |-  ( ( ph /\ k e. X ) -> B e. RR ) | 
						
							| 4 |  | iinhoiicclem.f |  |-  ( ph -> F e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 5 | 4 | elexd |  |-  ( ph -> F e. _V ) | 
						
							| 6 |  | 1nn |  |-  1 e. NN | 
						
							| 7 | 6 | a1i |  |-  ( ph -> 1 e. NN ) | 
						
							| 8 |  | peano2re |  |-  ( B e. RR -> ( B + 1 ) e. RR ) | 
						
							| 9 | 3 8 | syl |  |-  ( ( ph /\ k e. X ) -> ( B + 1 ) e. RR ) | 
						
							| 10 | 9 | rexrd |  |-  ( ( ph /\ k e. X ) -> ( B + 1 ) e. RR* ) | 
						
							| 11 |  | icossre |  |-  ( ( A e. RR /\ ( B + 1 ) e. RR* ) -> ( A [,) ( B + 1 ) ) C_ RR ) | 
						
							| 12 | 2 10 11 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( A [,) ( B + 1 ) ) C_ RR ) | 
						
							| 13 | 1 12 | ixpssixp |  |-  ( ph -> X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X RR ) | 
						
							| 14 |  | oveq2 |  |-  ( n = 1 -> ( 1 / n ) = ( 1 / 1 ) ) | 
						
							| 15 |  | 1div1e1 |  |-  ( 1 / 1 ) = 1 | 
						
							| 16 | 15 | a1i |  |-  ( n = 1 -> ( 1 / 1 ) = 1 ) | 
						
							| 17 | 14 16 | eqtrd |  |-  ( n = 1 -> ( 1 / n ) = 1 ) | 
						
							| 18 | 17 | oveq2d |  |-  ( n = 1 -> ( B + ( 1 / n ) ) = ( B + 1 ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( n = 1 -> ( A [,) ( B + ( 1 / n ) ) ) = ( A [,) ( B + 1 ) ) ) | 
						
							| 20 | 19 | ixpeq2dv |  |-  ( n = 1 -> X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) = X_ k e. X ( A [,) ( B + 1 ) ) ) | 
						
							| 21 | 20 | sseq1d |  |-  ( n = 1 -> ( X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X RR <-> X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X RR ) ) | 
						
							| 22 | 21 | rspcev |  |-  ( ( 1 e. NN /\ X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X RR ) -> E. n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X RR ) | 
						
							| 23 | 7 13 22 | syl2anc |  |-  ( ph -> E. n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X RR ) | 
						
							| 24 |  | iinss |  |-  ( E. n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X RR -> |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X RR ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X RR ) | 
						
							| 26 | 25 4 | sseldd |  |-  ( ph -> F e. X_ k e. X RR ) | 
						
							| 27 |  | elixpconstg |  |-  ( F e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) -> ( F e. X_ k e. X RR <-> F : X --> RR ) ) | 
						
							| 28 | 4 27 | syl |  |-  ( ph -> ( F e. X_ k e. X RR <-> F : X --> RR ) ) | 
						
							| 29 | 26 28 | mpbid |  |-  ( ph -> F : X --> RR ) | 
						
							| 30 | 29 | ffnd |  |-  ( ph -> F Fn X ) | 
						
							| 31 | 29 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( F ` k ) e. RR ) | 
						
							| 32 | 2 | rexrd |  |-  ( ( ph /\ k e. X ) -> A e. RR* ) | 
						
							| 33 |  | ssid |  |-  X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) | 
						
							| 34 | 33 | a1i |  |-  ( ph -> X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) | 
						
							| 35 | 20 | sseq1d |  |-  ( n = 1 -> ( X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) <-> X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) ) | 
						
							| 36 | 35 | rspcev |  |-  ( ( 1 e. NN /\ X_ k e. X ( A [,) ( B + 1 ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) -> E. n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) | 
						
							| 37 | 7 34 36 | syl2anc |  |-  ( ph -> E. n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) | 
						
							| 38 |  | iinss |  |-  ( E. n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) -> |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ph -> |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,) ( B + 1 ) ) ) | 
						
							| 40 | 39 4 | sseldd |  |-  ( ph -> F e. X_ k e. X ( A [,) ( B + 1 ) ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ph /\ k e. X ) -> F e. X_ k e. X ( A [,) ( B + 1 ) ) ) | 
						
							| 42 |  | simpr |  |-  ( ( ph /\ k e. X ) -> k e. X ) | 
						
							| 43 |  | fvixp2 |  |-  ( ( F e. X_ k e. X ( A [,) ( B + 1 ) ) /\ k e. X ) -> ( F ` k ) e. ( A [,) ( B + 1 ) ) ) | 
						
							| 44 | 41 42 43 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( F ` k ) e. ( A [,) ( B + 1 ) ) ) | 
						
							| 45 |  | icogelb |  |-  ( ( A e. RR* /\ ( B + 1 ) e. RR* /\ ( F ` k ) e. ( A [,) ( B + 1 ) ) ) -> A <_ ( F ` k ) ) | 
						
							| 46 | 32 10 44 45 | syl3anc |  |-  ( ( ph /\ k e. X ) -> A <_ ( F ` k ) ) | 
						
							| 47 | 31 | adantr |  |-  ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( F ` k ) e. RR ) | 
						
							| 48 | 3 | adantr |  |-  ( ( ( ph /\ k e. X ) /\ n e. NN ) -> B e. RR ) | 
						
							| 49 |  | nnrecre |  |-  ( n e. NN -> ( 1 / n ) e. RR ) | 
						
							| 50 | 49 | adantl |  |-  ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( 1 / n ) e. RR ) | 
						
							| 51 | 48 50 | readdcld |  |-  ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( B + ( 1 / n ) ) e. RR ) | 
						
							| 52 | 32 | adantr |  |-  ( ( ( ph /\ k e. X ) /\ n e. NN ) -> A e. RR* ) | 
						
							| 53 |  | ressxr |  |-  RR C_ RR* | 
						
							| 54 | 53 51 | sselid |  |-  ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( B + ( 1 / n ) ) e. RR* ) | 
						
							| 55 |  | eliin |  |-  ( F e. _V -> ( F e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) <-> A. n e. NN F e. X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) ) | 
						
							| 56 | 5 55 | syl |  |-  ( ph -> ( F e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) <-> A. n e. NN F e. X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) ) | 
						
							| 57 | 4 56 | mpbid |  |-  ( ph -> A. n e. NN F e. X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 58 | 57 | r19.21bi |  |-  ( ( ph /\ n e. NN ) -> F e. X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 59 |  | elixp2 |  |-  ( F e. X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) <-> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( A [,) ( B + ( 1 / n ) ) ) ) ) | 
						
							| 60 | 58 59 | sylib |  |-  ( ( ph /\ n e. NN ) -> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( A [,) ( B + ( 1 / n ) ) ) ) ) | 
						
							| 61 | 60 | simp3d |  |-  ( ( ph /\ n e. NN ) -> A. k e. X ( F ` k ) e. ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 62 | 61 | r19.21bi |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( F ` k ) e. ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 63 | 62 | an32s |  |-  ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( F ` k ) e. ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 64 |  | icoltub |  |-  ( ( A e. RR* /\ ( B + ( 1 / n ) ) e. RR* /\ ( F ` k ) e. ( A [,) ( B + ( 1 / n ) ) ) ) -> ( F ` k ) < ( B + ( 1 / n ) ) ) | 
						
							| 65 | 52 54 63 64 | syl3anc |  |-  ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( F ` k ) < ( B + ( 1 / n ) ) ) | 
						
							| 66 | 47 51 65 | ltled |  |-  ( ( ( ph /\ k e. X ) /\ n e. NN ) -> ( F ` k ) <_ ( B + ( 1 / n ) ) ) | 
						
							| 67 | 66 | ralrimiva |  |-  ( ( ph /\ k e. X ) -> A. n e. NN ( F ` k ) <_ ( B + ( 1 / n ) ) ) | 
						
							| 68 |  | nfv |  |-  F/ n ( ph /\ k e. X ) | 
						
							| 69 | 53 31 | sselid |  |-  ( ( ph /\ k e. X ) -> ( F ` k ) e. RR* ) | 
						
							| 70 | 68 69 3 | xrralrecnnle |  |-  ( ( ph /\ k e. X ) -> ( ( F ` k ) <_ B <-> A. n e. NN ( F ` k ) <_ ( B + ( 1 / n ) ) ) ) | 
						
							| 71 | 67 70 | mpbird |  |-  ( ( ph /\ k e. X ) -> ( F ` k ) <_ B ) | 
						
							| 72 | 2 3 31 46 71 | eliccd |  |-  ( ( ph /\ k e. X ) -> ( F ` k ) e. ( A [,] B ) ) | 
						
							| 73 | 72 | ex |  |-  ( ph -> ( k e. X -> ( F ` k ) e. ( A [,] B ) ) ) | 
						
							| 74 | 1 73 | ralrimi |  |-  ( ph -> A. k e. X ( F ` k ) e. ( A [,] B ) ) | 
						
							| 75 | 5 30 74 | 3jca |  |-  ( ph -> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( A [,] B ) ) ) | 
						
							| 76 |  | elixp2 |  |-  ( F e. X_ k e. X ( A [,] B ) <-> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( A [,] B ) ) ) | 
						
							| 77 | 75 76 | sylibr |  |-  ( ph -> F e. X_ k e. X ( A [,] B ) ) |