| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iunhoiicc.k |  |-  F/ k ph | 
						
							| 2 |  | iunhoiicc.a |  |-  ( ( ph /\ k e. X ) -> A e. RR ) | 
						
							| 3 |  | iunhoiicc.b |  |-  ( ( ph /\ k e. X ) -> B e. RR ) | 
						
							| 4 |  | oveq2 |  |-  ( n = m -> ( 1 / n ) = ( 1 / m ) ) | 
						
							| 5 | 4 | oveq2d |  |-  ( n = m -> ( B + ( 1 / n ) ) = ( B + ( 1 / m ) ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( n = m -> ( A [,) ( B + ( 1 / n ) ) ) = ( A [,) ( B + ( 1 / m ) ) ) ) | 
						
							| 7 | 6 | ixpeq2dv |  |-  ( n = m -> X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) = X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) ) | 
						
							| 8 | 7 | cbviinv |  |-  |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) = |^|_ m e. NN X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) | 
						
							| 9 | 8 | eleq2i |  |-  ( f e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) <-> f e. |^|_ m e. NN X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) ) | 
						
							| 10 | 9 | biimpi |  |-  ( f e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) -> f e. |^|_ m e. NN X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ph /\ f e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) -> f e. |^|_ m e. NN X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) ) | 
						
							| 12 |  | nfcv |  |-  F/_ k f | 
						
							| 13 |  | nfcv |  |-  F/_ k NN | 
						
							| 14 |  | nfixp1 |  |-  F/_ k X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) | 
						
							| 15 | 13 14 | nfiin |  |-  F/_ k |^|_ m e. NN X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) | 
						
							| 16 | 12 15 | nfel |  |-  F/ k f e. |^|_ m e. NN X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) | 
						
							| 17 | 1 16 | nfan |  |-  F/ k ( ph /\ f e. |^|_ m e. NN X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) ) | 
						
							| 18 | 2 | adantlr |  |-  ( ( ( ph /\ f e. |^|_ m e. NN X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) ) /\ k e. X ) -> A e. RR ) | 
						
							| 19 | 3 | adantlr |  |-  ( ( ( ph /\ f e. |^|_ m e. NN X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) ) /\ k e. X ) -> B e. RR ) | 
						
							| 20 | 9 | biimpri |  |-  ( f e. |^|_ m e. NN X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) -> f e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ f e. |^|_ m e. NN X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) ) -> f e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 22 | 17 18 19 21 | iinhoiicclem |  |-  ( ( ph /\ f e. |^|_ m e. NN X_ k e. X ( A [,) ( B + ( 1 / m ) ) ) ) -> f e. X_ k e. X ( A [,] B ) ) | 
						
							| 23 | 11 22 | syldan |  |-  ( ( ph /\ f e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) -> f e. X_ k e. X ( A [,] B ) ) | 
						
							| 24 | 23 | ralrimiva |  |-  ( ph -> A. f e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) f e. X_ k e. X ( A [,] B ) ) | 
						
							| 25 |  | dfss3 |  |-  ( |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,] B ) <-> A. f e. |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) f e. X_ k e. X ( A [,] B ) ) | 
						
							| 26 | 24 25 | sylibr |  |-  ( ph -> |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) C_ X_ k e. X ( A [,] B ) ) | 
						
							| 27 |  | nfv |  |-  F/ k n e. NN | 
						
							| 28 | 1 27 | nfan |  |-  F/ k ( ph /\ n e. NN ) | 
						
							| 29 | 2 | rexrd |  |-  ( ( ph /\ k e. X ) -> A e. RR* ) | 
						
							| 30 | 29 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> A e. RR* ) | 
						
							| 31 | 3 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> B e. RR ) | 
						
							| 32 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 33 | 32 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> n e. RR+ ) | 
						
							| 34 | 33 | rpreccld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR+ ) | 
						
							| 35 | 34 | rpred |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) | 
						
							| 36 | 31 35 | readdcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B + ( 1 / n ) ) e. RR ) | 
						
							| 37 | 36 | rexrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B + ( 1 / n ) ) e. RR* ) | 
						
							| 38 | 2 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> A e. RR ) | 
						
							| 39 | 38 | leidd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> A <_ A ) | 
						
							| 40 | 31 34 | ltaddrpd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> B < ( B + ( 1 / n ) ) ) | 
						
							| 41 |  | iccssico |  |-  ( ( ( A e. RR* /\ ( B + ( 1 / n ) ) e. RR* ) /\ ( A <_ A /\ B < ( B + ( 1 / n ) ) ) ) -> ( A [,] B ) C_ ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 42 | 30 37 39 40 41 | syl22anc |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A [,] B ) C_ ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 43 | 28 42 | ixpssixp |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( A [,] B ) C_ X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 44 | 43 | ralrimiva |  |-  ( ph -> A. n e. NN X_ k e. X ( A [,] B ) C_ X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 45 |  | ssiin |  |-  ( X_ k e. X ( A [,] B ) C_ |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) <-> A. n e. NN X_ k e. X ( A [,] B ) C_ X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 46 | 44 45 | sylibr |  |-  ( ph -> X_ k e. X ( A [,] B ) C_ |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) ) | 
						
							| 47 | 26 46 | eqssd |  |-  ( ph -> |^|_ n e. NN X_ k e. X ( A [,) ( B + ( 1 / n ) ) ) = X_ k e. X ( A [,] B ) ) |