Metamath Proof Explorer


Theorem iinhoiicc

Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iunhoiicc.k k φ
iunhoiicc.a φ k X A
iunhoiicc.b φ k X B
Assertion iinhoiicc φ n k X A B + 1 n = k X A B

Proof

Step Hyp Ref Expression
1 iunhoiicc.k k φ
2 iunhoiicc.a φ k X A
3 iunhoiicc.b φ k X B
4 oveq2 n = m 1 n = 1 m
5 4 oveq2d n = m B + 1 n = B + 1 m
6 5 oveq2d n = m A B + 1 n = A B + 1 m
7 6 ixpeq2dv n = m k X A B + 1 n = k X A B + 1 m
8 7 cbviinv n k X A B + 1 n = m k X A B + 1 m
9 8 eleq2i f n k X A B + 1 n f m k X A B + 1 m
10 9 biimpi f n k X A B + 1 n f m k X A B + 1 m
11 10 adantl φ f n k X A B + 1 n f m k X A B + 1 m
12 nfcv _ k f
13 nfcv _ k
14 nfixp1 _ k k X A B + 1 m
15 13 14 nfiin _ k m k X A B + 1 m
16 12 15 nfel k f m k X A B + 1 m
17 1 16 nfan k φ f m k X A B + 1 m
18 2 adantlr φ f m k X A B + 1 m k X A
19 3 adantlr φ f m k X A B + 1 m k X B
20 9 biimpri f m k X A B + 1 m f n k X A B + 1 n
21 20 adantl φ f m k X A B + 1 m f n k X A B + 1 n
22 17 18 19 21 iinhoiicclem φ f m k X A B + 1 m f k X A B
23 11 22 syldan φ f n k X A B + 1 n f k X A B
24 23 ralrimiva φ f n k X A B + 1 n f k X A B
25 dfss3 n k X A B + 1 n k X A B f n k X A B + 1 n f k X A B
26 24 25 sylibr φ n k X A B + 1 n k X A B
27 nfv k n
28 1 27 nfan k φ n
29 2 rexrd φ k X A *
30 29 adantlr φ n k X A *
31 3 adantlr φ n k X B
32 nnrp n n +
33 32 ad2antlr φ n k X n +
34 33 rpreccld φ n k X 1 n +
35 34 rpred φ n k X 1 n
36 31 35 readdcld φ n k X B + 1 n
37 36 rexrd φ n k X B + 1 n *
38 2 adantlr φ n k X A
39 38 leidd φ n k X A A
40 31 34 ltaddrpd φ n k X B < B + 1 n
41 iccssico A * B + 1 n * A A B < B + 1 n A B A B + 1 n
42 30 37 39 40 41 syl22anc φ n k X A B A B + 1 n
43 28 42 ixpssixp φ n k X A B k X A B + 1 n
44 43 ralrimiva φ n k X A B k X A B + 1 n
45 ssiin k X A B n k X A B + 1 n n k X A B k X A B + 1 n
46 44 45 sylibr φ k X A B n k X A B + 1 n
47 26 46 eqssd φ n k X A B + 1 n = k X A B