Metamath Proof Explorer


Theorem iinhoiicclem

Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iinhoiicclem.k k φ
iinhoiicclem.a φ k X A
iinhoiicclem.b φ k X B
iinhoiicclem.f φ F n k X A B + 1 n
Assertion iinhoiicclem φ F k X A B

Proof

Step Hyp Ref Expression
1 iinhoiicclem.k k φ
2 iinhoiicclem.a φ k X A
3 iinhoiicclem.b φ k X B
4 iinhoiicclem.f φ F n k X A B + 1 n
5 4 elexd φ F V
6 1nn 1
7 6 a1i φ 1
8 peano2re B B + 1
9 3 8 syl φ k X B + 1
10 9 rexrd φ k X B + 1 *
11 icossre A B + 1 * A B + 1
12 2 10 11 syl2anc φ k X A B + 1
13 1 12 ixpssixp φ k X A B + 1 k X
14 oveq2 n = 1 1 n = 1 1
15 1div1e1 1 1 = 1
16 15 a1i n = 1 1 1 = 1
17 14 16 eqtrd n = 1 1 n = 1
18 17 oveq2d n = 1 B + 1 n = B + 1
19 18 oveq2d n = 1 A B + 1 n = A B + 1
20 19 ixpeq2dv n = 1 k X A B + 1 n = k X A B + 1
21 20 sseq1d n = 1 k X A B + 1 n k X k X A B + 1 k X
22 21 rspcev 1 k X A B + 1 k X n k X A B + 1 n k X
23 7 13 22 syl2anc φ n k X A B + 1 n k X
24 iinss n k X A B + 1 n k X n k X A B + 1 n k X
25 23 24 syl φ n k X A B + 1 n k X
26 25 4 sseldd φ F k X
27 elixpconstg F n k X A B + 1 n F k X F : X
28 4 27 syl φ F k X F : X
29 26 28 mpbid φ F : X
30 29 ffnd φ F Fn X
31 29 ffvelrnda φ k X F k
32 2 rexrd φ k X A *
33 ssid k X A B + 1 k X A B + 1
34 33 a1i φ k X A B + 1 k X A B + 1
35 20 sseq1d n = 1 k X A B + 1 n k X A B + 1 k X A B + 1 k X A B + 1
36 35 rspcev 1 k X A B + 1 k X A B + 1 n k X A B + 1 n k X A B + 1
37 7 34 36 syl2anc φ n k X A B + 1 n k X A B + 1
38 iinss n k X A B + 1 n k X A B + 1 n k X A B + 1 n k X A B + 1
39 37 38 syl φ n k X A B + 1 n k X A B + 1
40 39 4 sseldd φ F k X A B + 1
41 40 adantr φ k X F k X A B + 1
42 simpr φ k X k X
43 fvixp2 F k X A B + 1 k X F k A B + 1
44 41 42 43 syl2anc φ k X F k A B + 1
45 icogelb A * B + 1 * F k A B + 1 A F k
46 32 10 44 45 syl3anc φ k X A F k
47 31 adantr φ k X n F k
48 3 adantr φ k X n B
49 nnrecre n 1 n
50 49 adantl φ k X n 1 n
51 48 50 readdcld φ k X n B + 1 n
52 32 adantr φ k X n A *
53 ressxr *
54 53 51 sseldi φ k X n B + 1 n *
55 eliin F V F n k X A B + 1 n n F k X A B + 1 n
56 5 55 syl φ F n k X A B + 1 n n F k X A B + 1 n
57 4 56 mpbid φ n F k X A B + 1 n
58 57 r19.21bi φ n F k X A B + 1 n
59 elixp2 F k X A B + 1 n F V F Fn X k X F k A B + 1 n
60 58 59 sylib φ n F V F Fn X k X F k A B + 1 n
61 60 simp3d φ n k X F k A B + 1 n
62 61 r19.21bi φ n k X F k A B + 1 n
63 62 an32s φ k X n F k A B + 1 n
64 icoltub A * B + 1 n * F k A B + 1 n F k < B + 1 n
65 52 54 63 64 syl3anc φ k X n F k < B + 1 n
66 47 51 65 ltled φ k X n F k B + 1 n
67 66 ralrimiva φ k X n F k B + 1 n
68 nfv n φ k X
69 53 31 sseldi φ k X F k *
70 68 69 3 xrralrecnnle φ k X F k B n F k B + 1 n
71 67 70 mpbird φ k X F k B
72 2 3 31 46 71 eliccd φ k X F k A B
73 72 ex φ k X F k A B
74 1 73 ralrimi φ k X F k A B
75 5 30 74 3jca φ F V F Fn X k X F k A B
76 elixp2 F k X A B F V F Fn X k X F k A B
77 75 76 sylibr φ F k X A B