| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iinhoiicclem.k |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
iinhoiicclem.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
| 3 |
|
iinhoiicclem.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ ) |
| 4 |
|
iinhoiicclem.f |
⊢ ( 𝜑 → 𝐹 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
| 5 |
4
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 6 |
|
1nn |
⊢ 1 ∈ ℕ |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 8 |
|
peano2re |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) |
| 9 |
3 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 + 1 ) ∈ ℝ ) |
| 10 |
9
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 + 1 ) ∈ ℝ* ) |
| 11 |
|
icossre |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ* ) → ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ ℝ ) |
| 12 |
2 10 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ ℝ ) |
| 13 |
1 12
|
ixpssixp |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) |
| 14 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 / 𝑛 ) = ( 1 / 1 ) ) |
| 15 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 16 |
15
|
a1i |
⊢ ( 𝑛 = 1 → ( 1 / 1 ) = 1 ) |
| 17 |
14 16
|
eqtrd |
⊢ ( 𝑛 = 1 → ( 1 / 𝑛 ) = 1 ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 𝐵 + ( 1 / 𝑛 ) ) = ( 𝐵 + 1 ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
| 20 |
19
|
ixpeq2dv |
⊢ ( 𝑛 = 1 → X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
| 21 |
20
|
sseq1d |
⊢ ( 𝑛 = 1 → ( X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ↔ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) ) |
| 22 |
21
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) → ∃ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) |
| 23 |
7 13 22
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) |
| 24 |
|
iinss |
⊢ ( ∃ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ → ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) |
| 25 |
23 24
|
syl |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) |
| 26 |
25 4
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ X 𝑘 ∈ 𝑋 ℝ ) |
| 27 |
|
elixpconstg |
⊢ ( 𝐹 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) → ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ℝ ↔ 𝐹 : 𝑋 ⟶ ℝ ) ) |
| 28 |
4 27
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ℝ ↔ 𝐹 : 𝑋 ⟶ ℝ ) ) |
| 29 |
26 28
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 30 |
29
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 31 |
29
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 32 |
2
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ* ) |
| 33 |
|
ssid |
⊢ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
| 35 |
20
|
sseq1d |
⊢ ( 𝑛 = 1 → ( X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ↔ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) ) |
| 36 |
35
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
| 37 |
7 34 36
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
| 38 |
|
iinss |
⊢ ( ∃ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) → ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
| 39 |
37 38
|
syl |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
| 40 |
39 4
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
| 42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
| 43 |
|
fvixp2 |
⊢ ( ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
| 44 |
41 42 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
| 45 |
|
icogelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 + 1 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + 1 ) ) ) → 𝐴 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 46 |
32 10 44 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 47 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 48 |
3
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 49 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
| 50 |
49
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 51 |
48 50
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 52 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ* ) |
| 53 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 54 |
53 51
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ* ) |
| 55 |
|
eliin |
⊢ ( 𝐹 ∈ V → ( 𝐹 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑛 ∈ ℕ 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ) |
| 56 |
5 55
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑛 ∈ ℕ 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ) |
| 57 |
4 56
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
| 58 |
57
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
| 59 |
|
elixp2 |
⊢ ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ) |
| 60 |
58 59
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ) |
| 61 |
60
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
| 62 |
61
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
| 63 |
62
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
| 64 |
|
icoltub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝐵 + ( 1 / 𝑛 ) ) ) |
| 65 |
52 54 63 64
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) < ( 𝐵 + ( 1 / 𝑛 ) ) ) |
| 66 |
47 51 65
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) |
| 67 |
66
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) |
| 68 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) |
| 69 |
53 31
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
| 70 |
68 69 3
|
xrralrecnnle |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
| 71 |
67 70
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ≤ 𝐵 ) |
| 72 |
2 3 31 46 71
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 73 |
72
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 74 |
1 73
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 75 |
5 30 74
|
3jca |
⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 76 |
|
elixp2 |
⊢ ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 77 |
75 76
|
sylibr |
⊢ ( 𝜑 → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ) |