| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iinhoiicclem.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | iinhoiicclem.a | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | iinhoiicclem.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | iinhoiicclem.f | ⊢ ( 𝜑  →  𝐹  ∈  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 5 | 4 | elexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 6 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ ) | 
						
							| 8 |  | peano2re | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵  +  1 )  ∈  ℝ ) | 
						
							| 9 | 3 8 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵  +  1 )  ∈  ℝ ) | 
						
							| 10 | 9 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵  +  1 )  ∈  ℝ* ) | 
						
							| 11 |  | icossre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  +  1 )  ∈  ℝ* )  →  ( 𝐴 [,) ( 𝐵  +  1 ) )  ⊆  ℝ ) | 
						
							| 12 | 2 10 11 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 [,) ( 𝐵  +  1 ) )  ⊆  ℝ ) | 
						
							| 13 | 1 12 | ixpssixp | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) )  ⊆  X 𝑘  ∈  𝑋 ℝ ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑛  =  1  →  ( 1  /  𝑛 )  =  ( 1  /  1 ) ) | 
						
							| 15 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 16 | 15 | a1i | ⊢ ( 𝑛  =  1  →  ( 1  /  1 )  =  1 ) | 
						
							| 17 | 14 16 | eqtrd | ⊢ ( 𝑛  =  1  →  ( 1  /  𝑛 )  =  1 ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑛  =  1  →  ( 𝐵  +  ( 1  /  𝑛 ) )  =  ( 𝐵  +  1 ) ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( 𝑛  =  1  →  ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  =  ( 𝐴 [,) ( 𝐵  +  1 ) ) ) | 
						
							| 20 | 19 | ixpeq2dv | ⊢ ( 𝑛  =  1  →  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  =  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) ) ) | 
						
							| 21 | 20 | sseq1d | ⊢ ( 𝑛  =  1  →  ( X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ℝ  ↔  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) )  ⊆  X 𝑘  ∈  𝑋 ℝ ) ) | 
						
							| 22 | 21 | rspcev | ⊢ ( ( 1  ∈  ℕ  ∧  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) )  ⊆  X 𝑘  ∈  𝑋 ℝ )  →  ∃ 𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ℝ ) | 
						
							| 23 | 7 13 22 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ℝ ) | 
						
							| 24 |  | iinss | ⊢ ( ∃ 𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ℝ  →  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ℝ ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ℝ ) | 
						
							| 26 | 25 4 | sseldd | ⊢ ( 𝜑  →  𝐹  ∈  X 𝑘  ∈  𝑋 ℝ ) | 
						
							| 27 |  | elixpconstg | ⊢ ( 𝐹  ∈  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  →  ( 𝐹  ∈  X 𝑘  ∈  𝑋 ℝ  ↔  𝐹 : 𝑋 ⟶ ℝ ) ) | 
						
							| 28 | 4 27 | syl | ⊢ ( 𝜑  →  ( 𝐹  ∈  X 𝑘  ∈  𝑋 ℝ  ↔  𝐹 : 𝑋 ⟶ ℝ ) ) | 
						
							| 29 | 26 28 | mpbid | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℝ ) | 
						
							| 30 | 29 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑋 ) | 
						
							| 31 | 29 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 32 | 2 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ* ) | 
						
							| 33 |  | ssid | ⊢ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) ) | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) ) ) | 
						
							| 35 | 20 | sseq1d | ⊢ ( 𝑛  =  1  →  ( X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) )  ↔  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) ) ) ) | 
						
							| 36 | 35 | rspcev | ⊢ ( ( 1  ∈  ℕ  ∧  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) ) ) | 
						
							| 37 | 7 34 36 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) ) ) | 
						
							| 38 |  | iinss | ⊢ ( ∃ 𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) )  →  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) ) ) | 
						
							| 40 | 39 4 | sseldd | ⊢ ( 𝜑  →  𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝑘  ∈  𝑋 ) | 
						
							| 43 |  | fvixp2 | ⊢ ( ( 𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  1 ) )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,) ( 𝐵  +  1 ) ) ) | 
						
							| 44 | 41 42 43 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,) ( 𝐵  +  1 ) ) ) | 
						
							| 45 |  | icogelb | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ( 𝐵  +  1 )  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,) ( 𝐵  +  1 ) ) )  →  𝐴  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 46 | 32 10 44 45 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 47 | 31 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 48 | 3 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  𝐵  ∈  ℝ ) | 
						
							| 49 |  | nnrecre | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 51 | 48 50 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 52 | 32 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ℝ* ) | 
						
							| 53 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 54 | 53 51 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ* ) | 
						
							| 55 |  | eliin | ⊢ ( 𝐹  ∈  V  →  ( 𝐹  ∈  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ↔  ∀ 𝑛  ∈  ℕ 𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 56 | 5 55 | syl | ⊢ ( 𝜑  →  ( 𝐹  ∈  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ↔  ∀ 𝑛  ∈  ℕ 𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 57 | 4 56 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ 𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 58 | 57 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 59 |  | elixp2 | ⊢ ( 𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ↔  ( 𝐹  ∈  V  ∧  𝐹  Fn  𝑋  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 60 | 58 59 | sylib | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹  ∈  V  ∧  𝐹  Fn  𝑋  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 61 | 60 | simp3d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 62 | 61 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 63 | 62 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 64 |  | icoltub | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  ( 𝐹 ‘ 𝑘 )  <  ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 65 | 52 54 63 64 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  <  ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 66 | 47 51 65 | ltled | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 67 | 66 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ≤  ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 68 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑘  ∈  𝑋 ) | 
						
							| 69 | 53 31 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 70 | 68 69 3 | xrralrecnnle | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑘 )  ≤  𝐵  ↔  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ≤  ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 71 | 67 70 | mpbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ≤  𝐵 ) | 
						
							| 72 | 2 3 31 46 71 | eliccd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 73 | 72 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑋  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 74 | 1 73 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 75 | 5 30 74 | 3jca | ⊢ ( 𝜑  →  ( 𝐹  ∈  V  ∧  𝐹  Fn  𝑋  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 76 |  | elixp2 | ⊢ ( 𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 )  ↔  ( 𝐹  ∈  V  ∧  𝐹  Fn  𝑋  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 77 | 75 76 | sylibr | ⊢ ( 𝜑  →  𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 ) ) |