Step |
Hyp |
Ref |
Expression |
1 |
|
iinhoiicclem.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
iinhoiicclem.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
3 |
|
iinhoiicclem.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ ) |
4 |
|
iinhoiicclem.f |
⊢ ( 𝜑 → 𝐹 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
5 |
4
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
6 |
|
1nn |
⊢ 1 ∈ ℕ |
7 |
6
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
8 |
|
peano2re |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) |
9 |
3 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 + 1 ) ∈ ℝ ) |
10 |
9
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 + 1 ) ∈ ℝ* ) |
11 |
|
icossre |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ* ) → ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ ℝ ) |
12 |
2 10 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ ℝ ) |
13 |
1 12
|
ixpssixp |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) |
14 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 / 𝑛 ) = ( 1 / 1 ) ) |
15 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
16 |
15
|
a1i |
⊢ ( 𝑛 = 1 → ( 1 / 1 ) = 1 ) |
17 |
14 16
|
eqtrd |
⊢ ( 𝑛 = 1 → ( 1 / 𝑛 ) = 1 ) |
18 |
17
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 𝐵 + ( 1 / 𝑛 ) ) = ( 𝐵 + 1 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
20 |
19
|
ixpeq2dv |
⊢ ( 𝑛 = 1 → X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
21 |
20
|
sseq1d |
⊢ ( 𝑛 = 1 → ( X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ↔ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) ) |
22 |
21
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) → ∃ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) |
23 |
7 13 22
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) |
24 |
|
iinss |
⊢ ( ∃ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ → ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ℝ ) |
26 |
25 4
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ X 𝑘 ∈ 𝑋 ℝ ) |
27 |
|
elixpconstg |
⊢ ( 𝐹 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) → ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ℝ ↔ 𝐹 : 𝑋 ⟶ ℝ ) ) |
28 |
4 27
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ℝ ↔ 𝐹 : 𝑋 ⟶ ℝ ) ) |
29 |
26 28
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
30 |
29
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
31 |
29
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
32 |
2
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ* ) |
33 |
|
ssid |
⊢ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) |
34 |
33
|
a1i |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
35 |
20
|
sseq1d |
⊢ ( 𝑛 = 1 → ( X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ↔ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) ) |
36 |
35
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
37 |
7 34 36
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
38 |
|
iinss |
⊢ ( ∃ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) → ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
40 |
39 4
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
43 |
|
fvixp2 |
⊢ ( ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + 1 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
44 |
41 42 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + 1 ) ) ) |
45 |
|
icogelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 + 1 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + 1 ) ) ) → 𝐴 ≤ ( 𝐹 ‘ 𝑘 ) ) |
46 |
32 10 44 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ≤ ( 𝐹 ‘ 𝑘 ) ) |
47 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
48 |
3
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
49 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
50 |
49
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
51 |
48 50
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ ) |
52 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ* ) |
53 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
54 |
53 51
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ* ) |
55 |
|
eliin |
⊢ ( 𝐹 ∈ V → ( 𝐹 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑛 ∈ ℕ 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ) |
56 |
5 55
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑛 ∈ ℕ 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ) |
57 |
4 56
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
58 |
57
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
59 |
|
elixp2 |
⊢ ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ) |
60 |
58 59
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ) |
61 |
60
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
62 |
61
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
63 |
62
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
64 |
|
icoltub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝐵 + ( 1 / 𝑛 ) ) ) |
65 |
52 54 63 64
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) < ( 𝐵 + ( 1 / 𝑛 ) ) ) |
66 |
47 51 65
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) |
67 |
66
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) |
68 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) |
69 |
53 31
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
70 |
68 69 3
|
xrralrecnnle |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
71 |
67 70
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ≤ 𝐵 ) |
72 |
2 3 31 46 71
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
73 |
72
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
74 |
1 73
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
75 |
5 30 74
|
3jca |
⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
76 |
|
elixp2 |
⊢ ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
77 |
75 76
|
sylibr |
⊢ ( 𝜑 → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ) |