| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iunhoiicc.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | iunhoiicc.a | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | iunhoiicc.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 1  /  𝑛 )  =  ( 1  /  𝑚 ) ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝐵  +  ( 1  /  𝑛 ) )  =  ( 𝐵  +  ( 1  /  𝑚 ) ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  =  ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 7 | 6 | ixpeq2dv | ⊢ ( 𝑛  =  𝑚  →  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  =  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 8 | 7 | cbviinv | ⊢ ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  =  ∩  𝑚  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) | 
						
							| 9 | 8 | eleq2i | ⊢ ( 𝑓  ∈  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ↔  𝑓  ∈  ∩  𝑚  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 10 | 9 | biimpi | ⊢ ( 𝑓  ∈  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  →  𝑓  ∈  ∩  𝑚  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  𝑓  ∈  ∩  𝑚  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑘 𝑓 | 
						
							| 13 |  | nfcv | ⊢ Ⅎ 𝑘 ℕ | 
						
							| 14 |  | nfixp1 | ⊢ Ⅎ 𝑘 X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) | 
						
							| 15 | 13 14 | nfiin | ⊢ Ⅎ 𝑘 ∩  𝑚  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) | 
						
							| 16 | 12 15 | nfel | ⊢ Ⅎ 𝑘 𝑓  ∈  ∩  𝑚  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) | 
						
							| 17 | 1 16 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑓  ∈  ∩  𝑚  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 18 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∩  𝑚  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) )  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 19 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∩  𝑚  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) )  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ ) | 
						
							| 20 | 9 | biimpri | ⊢ ( 𝑓  ∈  ∩  𝑚  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) )  →  𝑓  ∈  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∩  𝑚  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) )  →  𝑓  ∈  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 22 | 17 18 19 21 | iinhoiicclem | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∩  𝑚  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑚 ) ) ) )  →  𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 ) ) | 
						
							| 23 | 11 22 | syldan | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 ) ) | 
						
							| 24 | 23 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) 𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 ) ) | 
						
							| 25 |  | dfss3 | ⊢ ( ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 )  ↔  ∀ 𝑓  ∈  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) 𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 ) ) | 
						
							| 26 | 24 25 | sylibr | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 ) ) | 
						
							| 27 |  | nfv | ⊢ Ⅎ 𝑘 𝑛  ∈  ℕ | 
						
							| 28 | 1 27 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑛  ∈  ℕ ) | 
						
							| 29 | 2 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ* ) | 
						
							| 30 | 29 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ* ) | 
						
							| 31 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ ) | 
						
							| 32 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 33 | 32 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝑛  ∈  ℝ+ ) | 
						
							| 34 | 33 | rpreccld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 35 | 34 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 36 | 31 35 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 37 | 36 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ* ) | 
						
							| 38 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 39 | 38 | leidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐴  ≤  𝐴 ) | 
						
							| 40 | 31 34 | ltaddrpd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐵  <  ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 41 |  | iccssico | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ* )  ∧  ( 𝐴  ≤  𝐴  ∧  𝐵  <  ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 42 | 30 37 39 40 41 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 [,] 𝐵 )  ⊆  ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 43 | 28 42 | ixpssixp | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 44 | 43 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 45 |  | ssiin | ⊢ ( X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 )  ⊆  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ↔  ∀ 𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 46 | 44 45 | sylibr | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 )  ⊆  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 47 | 26 46 | eqssd | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( 𝐴 [,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  =  X 𝑘  ∈  𝑋 ( 𝐴 [,] 𝐵 ) ) |