Metamath Proof Explorer


Theorem iinhoiicc

Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iunhoiicc.k 𝑘 𝜑
iunhoiicc.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
iunhoiicc.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ )
Assertion iinhoiicc ( 𝜑 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) )

Proof

Step Hyp Ref Expression
1 iunhoiicc.k 𝑘 𝜑
2 iunhoiicc.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
3 iunhoiicc.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ )
4 oveq2 ( 𝑛 = 𝑚 → ( 1 / 𝑛 ) = ( 1 / 𝑚 ) )
5 4 oveq2d ( 𝑛 = 𝑚 → ( 𝐵 + ( 1 / 𝑛 ) ) = ( 𝐵 + ( 1 / 𝑚 ) ) )
6 5 oveq2d ( 𝑛 = 𝑚 → ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) )
7 6 ixpeq2dv ( 𝑛 = 𝑚X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) )
8 7 cbviinv 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = 𝑚 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) )
9 8 eleq2i ( 𝑓 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ↔ 𝑓 𝑚 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) )
10 9 biimpi ( 𝑓 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) → 𝑓 𝑚 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) )
11 10 adantl ( ( 𝜑𝑓 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝑓 𝑚 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) )
12 nfcv 𝑘 𝑓
13 nfcv 𝑘
14 nfixp1 𝑘 X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) )
15 13 14 nfiin 𝑘 𝑚 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) )
16 12 15 nfel 𝑘 𝑓 𝑚 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) )
17 1 16 nfan 𝑘 ( 𝜑𝑓 𝑚 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) )
18 2 adantlr ( ( ( 𝜑𝑓 𝑚 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) ∧ 𝑘𝑋 ) → 𝐴 ∈ ℝ )
19 3 adantlr ( ( ( 𝜑𝑓 𝑚 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) ∧ 𝑘𝑋 ) → 𝐵 ∈ ℝ )
20 9 biimpri ( 𝑓 𝑚 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) → 𝑓 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) )
21 20 adantl ( ( 𝜑𝑓 𝑚 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) → 𝑓 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) )
22 17 18 19 21 iinhoiicclem ( ( 𝜑𝑓 𝑚 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) → 𝑓X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) )
23 11 22 syldan ( ( 𝜑𝑓 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝑓X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) )
24 23 ralrimiva ( 𝜑 → ∀ 𝑓 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) 𝑓X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) )
25 dfss3 ( 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) ↔ ∀ 𝑓 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) 𝑓X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) )
26 24 25 sylibr ( 𝜑 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) )
27 nfv 𝑘 𝑛 ∈ ℕ
28 1 27 nfan 𝑘 ( 𝜑𝑛 ∈ ℕ )
29 2 rexrd ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ* )
30 29 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐴 ∈ ℝ* )
31 3 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐵 ∈ ℝ )
32 nnrp ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ )
33 32 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝑛 ∈ ℝ+ )
34 33 rpreccld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ+ )
35 34 rpred ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ )
36 31 35 readdcld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ )
37 36 rexrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ* )
38 2 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐴 ∈ ℝ )
39 38 leidd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐴𝐴 )
40 31 34 ltaddrpd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐵 < ( 𝐵 + ( 1 / 𝑛 ) ) )
41 iccssico ( ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ* ) ∧ ( 𝐴𝐴𝐵 < ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) )
42 30 37 39 40 41 syl22anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) )
43 28 42 ixpssixp ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) ⊆ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) )
44 43 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) ⊆ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) )
45 ssiin ( X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) ⊆ 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) ⊆ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) )
46 44 45 sylibr ( 𝜑X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) ⊆ 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) )
47 26 46 eqssd ( 𝜑 𝑛 ∈ ℕ X 𝑘𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) )