Step |
Hyp |
Ref |
Expression |
1 |
|
iunhoiicc.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
iunhoiicc.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
3 |
|
iunhoiicc.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ ) |
4 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 / 𝑛 ) = ( 1 / 𝑚 ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝐵 + ( 1 / 𝑛 ) ) = ( 𝐵 + ( 1 / 𝑚 ) ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) |
7 |
6
|
ixpeq2dv |
⊢ ( 𝑛 = 𝑚 → X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) |
8 |
7
|
cbviinv |
⊢ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = ∩ 𝑚 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) |
9 |
8
|
eleq2i |
⊢ ( 𝑓 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ↔ 𝑓 ∈ ∩ 𝑚 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) |
10 |
9
|
biimpi |
⊢ ( 𝑓 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) → 𝑓 ∈ ∩ 𝑚 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝑓 ∈ ∩ 𝑚 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑓 |
13 |
|
nfcv |
⊢ Ⅎ 𝑘 ℕ |
14 |
|
nfixp1 |
⊢ Ⅎ 𝑘 X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) |
15 |
13 14
|
nfiin |
⊢ Ⅎ 𝑘 ∩ 𝑚 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) |
16 |
12 15
|
nfel |
⊢ Ⅎ 𝑘 𝑓 ∈ ∩ 𝑚 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) |
17 |
1 16
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑓 ∈ ∩ 𝑚 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) |
18 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∩ 𝑚 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
19 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∩ 𝑚 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ ) |
20 |
9
|
biimpri |
⊢ ( 𝑓 ∈ ∩ 𝑚 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) → 𝑓 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∩ 𝑚 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) → 𝑓 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
22 |
17 18 19 21
|
iinhoiicclem |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∩ 𝑚 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑚 ) ) ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ) |
23 |
11 22
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ) |
24 |
23
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ) |
25 |
|
dfss3 |
⊢ ( ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ↔ ∀ 𝑓 ∈ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ) |
26 |
24 25
|
sylibr |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ) |
27 |
|
nfv |
⊢ Ⅎ 𝑘 𝑛 ∈ ℕ |
28 |
1 27
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑛 ∈ ℕ ) |
29 |
2
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ* ) |
30 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ* ) |
31 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ ) |
32 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
33 |
32
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝑛 ∈ ℝ+ ) |
34 |
33
|
rpreccld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
35 |
34
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
36 |
31 35
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ ) |
37 |
36
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ* ) |
38 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
39 |
38
|
leidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ≤ 𝐴 ) |
40 |
31 34
|
ltaddrpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 < ( 𝐵 + ( 1 / 𝑛 ) ) ) |
41 |
|
iccssico |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐴 ∧ 𝐵 < ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
42 |
30 37 39 40 41
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
43 |
28 42
|
ixpssixp |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
44 |
43
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
45 |
|
ssiin |
⊢ ( X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ⊆ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
46 |
44 45
|
sylibr |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ⊆ ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
47 |
26 46
|
eqssd |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( 𝐴 [,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = X 𝑘 ∈ 𝑋 ( 𝐴 [,] 𝐵 ) ) |