Metamath Proof Explorer


Theorem elixpconstg

Description: Membership in an infinite Cartesian product of a constant B . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion elixpconstg FVFxABF:AB

Proof

Step Hyp Ref Expression
1 ixpfn FxABFFnA
2 elixp2 FxABFVFFnAxAFxB
3 2 simp3bi FxABxAFxB
4 ffnfv F:ABFFnAxAFxB
5 1 3 4 sylanbrc FxABF:AB
6 elex FVFV
7 6 adantr FVF:ABFV
8 ffn F:ABFFnA
9 8 adantl FVF:ABFFnA
10 4 simprbi F:ABxAFxB
11 10 adantl FVF:ABxAFxB
12 7 9 11 2 syl3anbrc FVF:ABFxAB
13 12 ex FVF:ABFxAB
14 5 13 impbid2 FVFxABF:AB