Metamath Proof Explorer


Theorem vonhoire

Description: The Lebesgue measure of a n-dimensional half-open interval is a real number. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonhoire.n kφ
vonhoire.x φXFin
vonhoire.a φkXA
vonhoire.b φkXB
Assertion vonhoire φvolnXkXAB

Proof

Step Hyp Ref Expression
1 vonhoire.n kφ
2 vonhoire.x φXFin
3 vonhoire.a φkXA
4 vonhoire.b φkXB
5 fveq2 X=volnX=voln
6 5 fveq1d X=volnXkXAB=volnkXAB
7 6 adantl φX=volnXkXAB=volnkXAB
8 ixpeq1 X=kXAB=kAB
9 8 adantl φX=kXAB=kAB
10 0fin Fin
11 10 a1i φFin
12 eqid domvoln=domvoln
13 noel ¬k
14 13 pm2.21i kA
15 14 adantl φkA
16 13 pm2.21i kB
17 16 adantl φkB
18 1 11 12 15 17 hoimbl2 φkABdomvoln
19 18 adantr φX=kABdomvoln
20 9 19 eqeltrd φX=kXABdomvoln
21 20 von0val φX=volnkXAB=0
22 7 21 eqtrd φX=volnXkXAB=0
23 0red φX=0
24 22 23 eqeltrd φX=volnXkXAB
25 neqne ¬X=X
26 25 adantl φ¬X=X
27 simpr φjXjX
28 nfv kjX
29 1 28 nfan kφjX
30 nfcv _kj
31 30 nfcsb1 _kj/kA
32 31 nfel1 kj/kA
33 29 32 nfim kφjXj/kA
34 eleq1w k=jkXjX
35 34 anbi2d k=jφkXφjX
36 csbeq1a k=jA=j/kA
37 36 eleq1d k=jAj/kA
38 35 37 imbi12d k=jφkXAφjXj/kA
39 33 38 3 chvarfv φjXj/kA
40 eqid kXA=kXA
41 30 31 36 40 fvmptf jXj/kAkXAj=j/kA
42 27 39 41 syl2anc φjXkXAj=j/kA
43 30 nfcsb1 _kj/kB
44 nfcv _k
45 43 44 nfel kj/kB
46 29 45 nfim kφjXj/kB
47 csbeq1a k=jB=j/kB
48 47 eleq1d k=jBj/kB
49 35 48 imbi12d k=jφkXBφjXj/kB
50 46 49 4 chvarfv φjXj/kB
51 eqid kXB=kXB
52 30 43 47 51 fvmptf jXj/kBkXBj=j/kB
53 27 50 52 syl2anc φjXkXBj=j/kB
54 42 53 oveq12d φjXkXAjkXBj=j/kAj/kB
55 54 ixpeq2dva φjXkXAjkXBj=jXj/kAj/kB
56 nfcv _jAB
57 nfcv _k.
58 31 57 43 nfov _kj/kAj/kB
59 36 47 oveq12d k=jAB=j/kAj/kB
60 56 58 59 cbvixp kXAB=jXj/kAj/kB
61 60 eqcomi jXj/kAj/kB=kXAB
62 61 a1i φjXj/kAj/kB=kXAB
63 55 62 eqtr2d φkXAB=jXkXAjkXBj
64 63 fveq2d φvolnXkXAB=volnXjXkXAjkXBj
65 64 adantr φXvolnXkXAB=volnXjXkXAjkXBj
66 2 adantr φXXFin
67 simpr φXX
68 1 3 40 fmptdf φkXA:X
69 68 adantr φXkXA:X
70 1 4 51 fmptdf φkXB:X
71 70 adantr φXkXB:X
72 eqid jXkXAjkXBj=jXkXAjkXBj
73 66 67 69 71 72 vonn0hoi φXvolnXjXkXAjkXBj=jXvolkXAjkXBj
74 65 73 eqtrd φXvolnXkXAB=jXvolkXAjkXBj
75 42 39 eqeltrd φjXkXAj
76 53 50 eqeltrd φjXkXBj
77 volicore kXAjkXBjvolkXAjkXBj
78 75 76 77 syl2anc φjXvolkXAjkXBj
79 2 78 fprodrecl φjXvolkXAjkXBj
80 79 adantr φXjXvolkXAjkXBj
81 74 80 eqeltrd φXvolnXkXAB
82 26 81 syldan φ¬X=volnXkXAB
83 24 82 pm2.61dan φvolnXkXAB