Metamath Proof Explorer


Theorem vonhoire

Description: The Lebesgue measure of a n-dimensional half-open interval is a real number. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonhoire.n k φ
vonhoire.x φ X Fin
vonhoire.a φ k X A
vonhoire.b φ k X B
Assertion vonhoire φ voln X k X A B

Proof

Step Hyp Ref Expression
1 vonhoire.n k φ
2 vonhoire.x φ X Fin
3 vonhoire.a φ k X A
4 vonhoire.b φ k X B
5 fveq2 X = voln X = voln
6 5 fveq1d X = voln X k X A B = voln k X A B
7 6 adantl φ X = voln X k X A B = voln k X A B
8 ixpeq1 X = k X A B = k A B
9 8 adantl φ X = k X A B = k A B
10 0fin Fin
11 10 a1i φ Fin
12 eqid dom voln = dom voln
13 noel ¬ k
14 13 pm2.21i k A
15 14 adantl φ k A
16 13 pm2.21i k B
17 16 adantl φ k B
18 1 11 12 15 17 hoimbl2 φ k A B dom voln
19 18 adantr φ X = k A B dom voln
20 9 19 eqeltrd φ X = k X A B dom voln
21 20 von0val φ X = voln k X A B = 0
22 7 21 eqtrd φ X = voln X k X A B = 0
23 0red φ X = 0
24 22 23 eqeltrd φ X = voln X k X A B
25 neqne ¬ X = X
26 25 adantl φ ¬ X = X
27 simpr φ j X j X
28 nfv k j X
29 1 28 nfan k φ j X
30 nfcv _ k j
31 30 nfcsb1 _ k j / k A
32 31 nfel1 k j / k A
33 29 32 nfim k φ j X j / k A
34 eleq1w k = j k X j X
35 34 anbi2d k = j φ k X φ j X
36 csbeq1a k = j A = j / k A
37 36 eleq1d k = j A j / k A
38 35 37 imbi12d k = j φ k X A φ j X j / k A
39 33 38 3 chvarfv φ j X j / k A
40 eqid k X A = k X A
41 30 31 36 40 fvmptf j X j / k A k X A j = j / k A
42 27 39 41 syl2anc φ j X k X A j = j / k A
43 30 nfcsb1 _ k j / k B
44 nfcv _ k
45 43 44 nfel k j / k B
46 29 45 nfim k φ j X j / k B
47 csbeq1a k = j B = j / k B
48 47 eleq1d k = j B j / k B
49 35 48 imbi12d k = j φ k X B φ j X j / k B
50 46 49 4 chvarfv φ j X j / k B
51 eqid k X B = k X B
52 30 43 47 51 fvmptf j X j / k B k X B j = j / k B
53 27 50 52 syl2anc φ j X k X B j = j / k B
54 42 53 oveq12d φ j X k X A j k X B j = j / k A j / k B
55 54 ixpeq2dva φ j X k X A j k X B j = j X j / k A j / k B
56 nfcv _ j A B
57 nfcv _ k .
58 31 57 43 nfov _ k j / k A j / k B
59 36 47 oveq12d k = j A B = j / k A j / k B
60 56 58 59 cbvixp k X A B = j X j / k A j / k B
61 60 eqcomi j X j / k A j / k B = k X A B
62 61 a1i φ j X j / k A j / k B = k X A B
63 55 62 eqtr2d φ k X A B = j X k X A j k X B j
64 63 fveq2d φ voln X k X A B = voln X j X k X A j k X B j
65 64 adantr φ X voln X k X A B = voln X j X k X A j k X B j
66 2 adantr φ X X Fin
67 simpr φ X X
68 1 3 40 fmptdf φ k X A : X
69 68 adantr φ X k X A : X
70 1 4 51 fmptdf φ k X B : X
71 70 adantr φ X k X B : X
72 eqid j X k X A j k X B j = j X k X A j k X B j
73 66 67 69 71 72 vonn0hoi φ X voln X j X k X A j k X B j = j X vol k X A j k X B j
74 65 73 eqtrd φ X voln X k X A B = j X vol k X A j k X B j
75 42 39 eqeltrd φ j X k X A j
76 53 50 eqeltrd φ j X k X B j
77 volicore k X A j k X B j vol k X A j k X B j
78 75 76 77 syl2anc φ j X vol k X A j k X B j
79 2 78 fprodrecl φ j X vol k X A j k X B j
80 79 adantr φ X j X vol k X A j k X B j
81 74 80 eqeltrd φ X voln X k X A B
82 26 81 syldan φ ¬ X = voln X k X A B
83 24 82 pm2.61dan φ voln X k X A B