Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hoimbl2.k | |
|
hoimbl2.x | |
||
hoimbl2.s | |
||
hoimbl2.a | |
||
hoimbl2.b | |
||
Assertion | hoimbl2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoimbl2.k | |
|
2 | hoimbl2.x | |
|
3 | hoimbl2.s | |
|
4 | hoimbl2.a | |
|
5 | hoimbl2.b | |
|
6 | simpr | |
|
7 | nfv | |
|
8 | 1 7 | nfan | |
9 | nfcsb1v | |
|
10 | nfcv | |
|
11 | 9 10 | nfel | |
12 | 8 11 | nfim | |
13 | eleq1w | |
|
14 | 13 | anbi2d | |
15 | csbeq1a | |
|
16 | 15 | eleq1d | |
17 | 14 16 | imbi12d | |
18 | 12 17 4 | chvarfv | |
19 | nfcv | |
|
20 | 19 | nfcsb1 | |
21 | eqid | |
|
22 | 19 20 15 21 | fvmptf | |
23 | 6 18 22 | syl2anc | |
24 | 19 | nfcsb1 | |
25 | 24 10 | nfel | |
26 | 8 25 | nfim | |
27 | csbeq1a | |
|
28 | 27 | eleq1d | |
29 | 14 28 | imbi12d | |
30 | 26 29 5 | chvarfv | |
31 | eqid | |
|
32 | 19 24 27 31 | fvmptf | |
33 | 6 30 32 | syl2anc | |
34 | 23 33 | oveq12d | |
35 | 34 | ixpeq2dva | |
36 | nfcv | |
|
37 | nfcv | |
|
38 | 9 37 24 | nfov | |
39 | 15 27 | oveq12d | |
40 | 36 38 39 | cbvixp | |
41 | 40 | eqcomi | |
42 | 41 | a1i | |
43 | 35 42 | eqtr2d | |
44 | 1 4 21 | fmptdf | |
45 | 1 5 31 | fmptdf | |
46 | 2 3 44 45 | hoimbl | |
47 | 43 46 | eqeltrd | |