Metamath Proof Explorer


Theorem hoimbl2

Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses hoimbl2.k kφ
hoimbl2.x φXFin
hoimbl2.s S=domvolnX
hoimbl2.a φkXA
hoimbl2.b φkXB
Assertion hoimbl2 φkXABS

Proof

Step Hyp Ref Expression
1 hoimbl2.k kφ
2 hoimbl2.x φXFin
3 hoimbl2.s S=domvolnX
4 hoimbl2.a φkXA
5 hoimbl2.b φkXB
6 simpr φjXjX
7 nfv kjX
8 1 7 nfan kφjX
9 nfcsb1v _kj/kA
10 nfcv _k
11 9 10 nfel kj/kA
12 8 11 nfim kφjXj/kA
13 eleq1w k=jkXjX
14 13 anbi2d k=jφkXφjX
15 csbeq1a k=jA=j/kA
16 15 eleq1d k=jAj/kA
17 14 16 imbi12d k=jφkXAφjXj/kA
18 12 17 4 chvarfv φjXj/kA
19 nfcv _kj
20 19 nfcsb1 _kj/kA
21 eqid kXA=kXA
22 19 20 15 21 fvmptf jXj/kAkXAj=j/kA
23 6 18 22 syl2anc φjXkXAj=j/kA
24 19 nfcsb1 _kj/kB
25 24 10 nfel kj/kB
26 8 25 nfim kφjXj/kB
27 csbeq1a k=jB=j/kB
28 27 eleq1d k=jBj/kB
29 14 28 imbi12d k=jφkXBφjXj/kB
30 26 29 5 chvarfv φjXj/kB
31 eqid kXB=kXB
32 19 24 27 31 fvmptf jXj/kBkXBj=j/kB
33 6 30 32 syl2anc φjXkXBj=j/kB
34 23 33 oveq12d φjXkXAjkXBj=j/kAj/kB
35 34 ixpeq2dva φjXkXAjkXBj=jXj/kAj/kB
36 nfcv _jAB
37 nfcv _k.
38 9 37 24 nfov _kj/kAj/kB
39 15 27 oveq12d k=jAB=j/kAj/kB
40 36 38 39 cbvixp kXAB=jXj/kAj/kB
41 40 eqcomi jXj/kAj/kB=kXAB
42 41 a1i φjXj/kAj/kB=kXAB
43 35 42 eqtr2d φkXAB=jXkXAjkXBj
44 1 4 21 fmptdf φkXA:X
45 1 5 31 fmptdf φkXB:X
46 2 3 44 45 hoimbl φjXkXAjkXBjS
47 43 46 eqeltrd φkXABS