| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoimbl2.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | hoimbl2.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | hoimbl2.s | ⊢ 𝑆  =  dom  ( voln ‘ 𝑋 ) | 
						
							| 4 |  | hoimbl2.a | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | hoimbl2.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  𝑗  ∈  𝑋 ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑘 𝑗  ∈  𝑋 | 
						
							| 8 | 1 7 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝑋 ) | 
						
							| 9 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐴 | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑘 ℝ | 
						
							| 11 | 9 10 | nfel | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℝ | 
						
							| 12 | 8 11 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 13 |  | eleq1w | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝑋  ↔  𝑗  ∈  𝑋 ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝑋 ) ) ) | 
						
							| 15 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐴  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐴  ∈  ℝ  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℝ ) ) | 
						
							| 17 | 14 16 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℝ ) ) ) | 
						
							| 18 | 12 17 4 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 19 |  | nfcv | ⊢ Ⅎ 𝑘 𝑗 | 
						
							| 20 | 19 | nfcsb1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐴 | 
						
							| 21 |  | eqid | ⊢ ( 𝑘  ∈  𝑋  ↦  𝐴 )  =  ( 𝑘  ∈  𝑋  ↦  𝐴 ) | 
						
							| 22 | 19 20 15 21 | fvmptf | ⊢ ( ( 𝑗  ∈  𝑋  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℝ )  →  ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 23 | 6 18 22 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 24 | 19 | nfcsb1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 25 | 24 10 | nfel | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ | 
						
							| 26 | 8 25 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) | 
						
							| 27 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐵  ∈  ℝ  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) ) | 
						
							| 29 | 14 28 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) ) ) | 
						
							| 30 | 26 29 5 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) | 
						
							| 31 |  | eqid | ⊢ ( 𝑘  ∈  𝑋  ↦  𝐵 )  =  ( 𝑘  ∈  𝑋  ↦  𝐵 ) | 
						
							| 32 | 19 24 27 31 | fvmptf | ⊢ ( ( 𝑗  ∈  𝑋  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ )  →  ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 33 | 6 30 32 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 34 | 23 33 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) )  =  ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 [,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 35 | 34 | ixpeq2dva | ⊢ ( 𝜑  →  X 𝑗  ∈  𝑋 ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) )  =  X 𝑗  ∈  𝑋 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 [,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑗 ( 𝐴 [,) 𝐵 ) | 
						
							| 37 |  | nfcv | ⊢ Ⅎ 𝑘 [,) | 
						
							| 38 | 9 37 24 | nfov | ⊢ Ⅎ 𝑘 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 [,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 39 | 15 27 | oveq12d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐴 [,) 𝐵 )  =  ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 [,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 40 | 36 38 39 | cbvixp | ⊢ X 𝑘  ∈  𝑋 ( 𝐴 [,) 𝐵 )  =  X 𝑗  ∈  𝑋 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 [,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 41 | 40 | eqcomi | ⊢ X 𝑗  ∈  𝑋 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 [,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 )  =  X 𝑘  ∈  𝑋 ( 𝐴 [,) 𝐵 ) | 
						
							| 42 | 41 | a1i | ⊢ ( 𝜑  →  X 𝑗  ∈  𝑋 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 [,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 )  =  X 𝑘  ∈  𝑋 ( 𝐴 [,) 𝐵 ) ) | 
						
							| 43 | 35 42 | eqtr2d | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑋 ( 𝐴 [,) 𝐵 )  =  X 𝑗  ∈  𝑋 ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) ) ) | 
						
							| 44 | 1 4 21 | fmptdf | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ℝ ) | 
						
							| 45 | 1 5 31 | fmptdf | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑋  ↦  𝐵 ) : 𝑋 ⟶ ℝ ) | 
						
							| 46 | 2 3 44 45 | hoimbl | ⊢ ( 𝜑  →  X 𝑗  ∈  𝑋 ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) )  ∈  𝑆 ) | 
						
							| 47 | 43 46 | eqeltrd | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑋 ( 𝐴 [,) 𝐵 )  ∈  𝑆 ) |