Step |
Hyp |
Ref |
Expression |
1 |
|
hoimbl2.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
hoimbl2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hoimbl2.s |
⊢ 𝑆 = dom ( voln ‘ 𝑋 ) |
4 |
|
hoimbl2.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
5 |
|
hoimbl2.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝑗 ∈ 𝑋 ) |
7 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑋 |
8 |
1 7
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) |
9 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐴 |
10 |
|
nfcv |
⊢ Ⅎ 𝑘 ℝ |
11 |
9 10
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℝ |
12 |
8 11
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℝ ) |
13 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑋 ↔ 𝑗 ∈ 𝑋 ) ) |
14 |
13
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) ) ) |
15 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐴 = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
16 |
15
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℝ ) ) |
17 |
14 16
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℝ ) ) ) |
18 |
12 17 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℝ ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
20 |
19
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐴 |
21 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) |
22 |
19 20 15 21
|
fvmptf |
⊢ ( ( 𝑗 ∈ 𝑋 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℝ ) → ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
23 |
6 18 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
24 |
19
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
25 |
24 10
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ |
26 |
8 25
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
27 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
28 |
27
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) |
29 |
14 28
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) ) |
30 |
26 29 5
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
31 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) |
32 |
19 24 27 31
|
fvmptf |
⊢ ( ( 𝑗 ∈ 𝑋 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) → ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
33 |
6 30 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
34 |
23 33
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) = ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 [,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
35 |
34
|
ixpeq2dva |
⊢ ( 𝜑 → X 𝑗 ∈ 𝑋 ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) = X 𝑗 ∈ 𝑋 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 [,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝐴 [,) 𝐵 ) |
37 |
|
nfcv |
⊢ Ⅎ 𝑘 [,) |
38 |
9 37 24
|
nfov |
⊢ Ⅎ 𝑘 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 [,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
39 |
15 27
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 [,) 𝐵 ) = ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 [,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
40 |
36 38 39
|
cbvixp |
⊢ X 𝑘 ∈ 𝑋 ( 𝐴 [,) 𝐵 ) = X 𝑗 ∈ 𝑋 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 [,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
41 |
40
|
eqcomi |
⊢ X 𝑗 ∈ 𝑋 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 [,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) = X 𝑘 ∈ 𝑋 ( 𝐴 [,) 𝐵 ) |
42 |
41
|
a1i |
⊢ ( 𝜑 → X 𝑗 ∈ 𝑋 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 [,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) = X 𝑘 ∈ 𝑋 ( 𝐴 [,) 𝐵 ) ) |
43 |
35 42
|
eqtr2d |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( 𝐴 [,) 𝐵 ) = X 𝑗 ∈ 𝑋 ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) ) |
44 |
1 4 21
|
fmptdf |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℝ ) |
45 |
1 5 31
|
fmptdf |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℝ ) |
46 |
2 3 44 45
|
hoimbl |
⊢ ( 𝜑 → X 𝑗 ∈ 𝑋 ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) ∈ 𝑆 ) |
47 |
43 46
|
eqeltrd |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( 𝐴 [,) 𝐵 ) ∈ 𝑆 ) |