Metamath Proof Explorer


Theorem hoimbl2

Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses hoimbl2.k 𝑘 𝜑
hoimbl2.x ( 𝜑𝑋 ∈ Fin )
hoimbl2.s 𝑆 = dom ( voln ‘ 𝑋 )
hoimbl2.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
hoimbl2.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ )
Assertion hoimbl2 ( 𝜑X 𝑘𝑋 ( 𝐴 [,) 𝐵 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 hoimbl2.k 𝑘 𝜑
2 hoimbl2.x ( 𝜑𝑋 ∈ Fin )
3 hoimbl2.s 𝑆 = dom ( voln ‘ 𝑋 )
4 hoimbl2.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
5 hoimbl2.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ )
6 simpr ( ( 𝜑𝑗𝑋 ) → 𝑗𝑋 )
7 nfv 𝑘 𝑗𝑋
8 1 7 nfan 𝑘 ( 𝜑𝑗𝑋 )
9 nfcsb1v 𝑘 𝑗 / 𝑘 𝐴
10 nfcv 𝑘
11 9 10 nfel 𝑘 𝑗 / 𝑘 𝐴 ∈ ℝ
12 8 11 nfim 𝑘 ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐴 ∈ ℝ )
13 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑋𝑗𝑋 ) )
14 13 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑋 ) ↔ ( 𝜑𝑗𝑋 ) ) )
15 csbeq1a ( 𝑘 = 𝑗𝐴 = 𝑗 / 𝑘 𝐴 )
16 15 eleq1d ( 𝑘 = 𝑗 → ( 𝐴 ∈ ℝ ↔ 𝑗 / 𝑘 𝐴 ∈ ℝ ) )
17 14 16 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ ) ↔ ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐴 ∈ ℝ ) ) )
18 12 17 4 chvarfv ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐴 ∈ ℝ )
19 nfcv 𝑘 𝑗
20 19 nfcsb1 𝑘 𝑗 / 𝑘 𝐴
21 eqid ( 𝑘𝑋𝐴 ) = ( 𝑘𝑋𝐴 )
22 19 20 15 21 fvmptf ( ( 𝑗𝑋 𝑗 / 𝑘 𝐴 ∈ ℝ ) → ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐴 )
23 6 18 22 syl2anc ( ( 𝜑𝑗𝑋 ) → ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐴 )
24 19 nfcsb1 𝑘 𝑗 / 𝑘 𝐵
25 24 10 nfel 𝑘 𝑗 / 𝑘 𝐵 ∈ ℝ
26 8 25 nfim 𝑘 ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐵 ∈ ℝ )
27 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
28 27 eleq1d ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℝ ↔ 𝑗 / 𝑘 𝐵 ∈ ℝ ) )
29 14 28 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ ) ↔ ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐵 ∈ ℝ ) ) )
30 26 29 5 chvarfv ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐵 ∈ ℝ )
31 eqid ( 𝑘𝑋𝐵 ) = ( 𝑘𝑋𝐵 )
32 19 24 27 31 fvmptf ( ( 𝑗𝑋 𝑗 / 𝑘 𝐵 ∈ ℝ ) → ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
33 6 30 32 syl2anc ( ( 𝜑𝑗𝑋 ) → ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
34 23 33 oveq12d ( ( 𝜑𝑗𝑋 ) → ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) = ( 𝑗 / 𝑘 𝐴 [,) 𝑗 / 𝑘 𝐵 ) )
35 34 ixpeq2dva ( 𝜑X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) = X 𝑗𝑋 ( 𝑗 / 𝑘 𝐴 [,) 𝑗 / 𝑘 𝐵 ) )
36 nfcv 𝑗 ( 𝐴 [,) 𝐵 )
37 nfcv 𝑘 [,)
38 9 37 24 nfov 𝑘 ( 𝑗 / 𝑘 𝐴 [,) 𝑗 / 𝑘 𝐵 )
39 15 27 oveq12d ( 𝑘 = 𝑗 → ( 𝐴 [,) 𝐵 ) = ( 𝑗 / 𝑘 𝐴 [,) 𝑗 / 𝑘 𝐵 ) )
40 36 38 39 cbvixp X 𝑘𝑋 ( 𝐴 [,) 𝐵 ) = X 𝑗𝑋 ( 𝑗 / 𝑘 𝐴 [,) 𝑗 / 𝑘 𝐵 )
41 40 eqcomi X 𝑗𝑋 ( 𝑗 / 𝑘 𝐴 [,) 𝑗 / 𝑘 𝐵 ) = X 𝑘𝑋 ( 𝐴 [,) 𝐵 )
42 41 a1i ( 𝜑X 𝑗𝑋 ( 𝑗 / 𝑘 𝐴 [,) 𝑗 / 𝑘 𝐵 ) = X 𝑘𝑋 ( 𝐴 [,) 𝐵 ) )
43 35 42 eqtr2d ( 𝜑X 𝑘𝑋 ( 𝐴 [,) 𝐵 ) = X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) )
44 1 4 21 fmptdf ( 𝜑 → ( 𝑘𝑋𝐴 ) : 𝑋 ⟶ ℝ )
45 1 5 31 fmptdf ( 𝜑 → ( 𝑘𝑋𝐵 ) : 𝑋 ⟶ ℝ )
46 2 3 44 45 hoimbl ( 𝜑X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ∈ 𝑆 )
47 43 46 eqeltrd ( 𝜑X 𝑘𝑋 ( 𝐴 [,) 𝐵 ) ∈ 𝑆 )