| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoimbl2.k |  |-  F/ k ph | 
						
							| 2 |  | hoimbl2.x |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | hoimbl2.s |  |-  S = dom ( voln ` X ) | 
						
							| 4 |  | hoimbl2.a |  |-  ( ( ph /\ k e. X ) -> A e. RR ) | 
						
							| 5 |  | hoimbl2.b |  |-  ( ( ph /\ k e. X ) -> B e. RR ) | 
						
							| 6 |  | simpr |  |-  ( ( ph /\ j e. X ) -> j e. X ) | 
						
							| 7 |  | nfv |  |-  F/ k j e. X | 
						
							| 8 | 1 7 | nfan |  |-  F/ k ( ph /\ j e. X ) | 
						
							| 9 |  | nfcsb1v |  |-  F/_ k [_ j / k ]_ A | 
						
							| 10 |  | nfcv |  |-  F/_ k RR | 
						
							| 11 | 9 10 | nfel |  |-  F/ k [_ j / k ]_ A e. RR | 
						
							| 12 | 8 11 | nfim |  |-  F/ k ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) | 
						
							| 13 |  | eleq1w |  |-  ( k = j -> ( k e. X <-> j e. X ) ) | 
						
							| 14 | 13 | anbi2d |  |-  ( k = j -> ( ( ph /\ k e. X ) <-> ( ph /\ j e. X ) ) ) | 
						
							| 15 |  | csbeq1a |  |-  ( k = j -> A = [_ j / k ]_ A ) | 
						
							| 16 | 15 | eleq1d |  |-  ( k = j -> ( A e. RR <-> [_ j / k ]_ A e. RR ) ) | 
						
							| 17 | 14 16 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. X ) -> A e. RR ) <-> ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) ) ) | 
						
							| 18 | 12 17 4 | chvarfv |  |-  ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) | 
						
							| 19 |  | nfcv |  |-  F/_ k j | 
						
							| 20 | 19 | nfcsb1 |  |-  F/_ k [_ j / k ]_ A | 
						
							| 21 |  | eqid |  |-  ( k e. X |-> A ) = ( k e. X |-> A ) | 
						
							| 22 | 19 20 15 21 | fvmptf |  |-  ( ( j e. X /\ [_ j / k ]_ A e. RR ) -> ( ( k e. X |-> A ) ` j ) = [_ j / k ]_ A ) | 
						
							| 23 | 6 18 22 | syl2anc |  |-  ( ( ph /\ j e. X ) -> ( ( k e. X |-> A ) ` j ) = [_ j / k ]_ A ) | 
						
							| 24 | 19 | nfcsb1 |  |-  F/_ k [_ j / k ]_ B | 
						
							| 25 | 24 10 | nfel |  |-  F/ k [_ j / k ]_ B e. RR | 
						
							| 26 | 8 25 | nfim |  |-  F/ k ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) | 
						
							| 27 |  | csbeq1a |  |-  ( k = j -> B = [_ j / k ]_ B ) | 
						
							| 28 | 27 | eleq1d |  |-  ( k = j -> ( B e. RR <-> [_ j / k ]_ B e. RR ) ) | 
						
							| 29 | 14 28 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. X ) -> B e. RR ) <-> ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) ) ) | 
						
							| 30 | 26 29 5 | chvarfv |  |-  ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) | 
						
							| 31 |  | eqid |  |-  ( k e. X |-> B ) = ( k e. X |-> B ) | 
						
							| 32 | 19 24 27 31 | fvmptf |  |-  ( ( j e. X /\ [_ j / k ]_ B e. RR ) -> ( ( k e. X |-> B ) ` j ) = [_ j / k ]_ B ) | 
						
							| 33 | 6 30 32 | syl2anc |  |-  ( ( ph /\ j e. X ) -> ( ( k e. X |-> B ) ` j ) = [_ j / k ]_ B ) | 
						
							| 34 | 23 33 | oveq12d |  |-  ( ( ph /\ j e. X ) -> ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) | 
						
							| 35 | 34 | ixpeq2dva |  |-  ( ph -> X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) | 
						
							| 36 |  | nfcv |  |-  F/_ j ( A [,) B ) | 
						
							| 37 |  | nfcv |  |-  F/_ k [,) | 
						
							| 38 | 9 37 24 | nfov |  |-  F/_ k ( [_ j / k ]_ A [,) [_ j / k ]_ B ) | 
						
							| 39 | 15 27 | oveq12d |  |-  ( k = j -> ( A [,) B ) = ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) | 
						
							| 40 | 36 38 39 | cbvixp |  |-  X_ k e. X ( A [,) B ) = X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) | 
						
							| 41 | 40 | eqcomi |  |-  X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) = X_ k e. X ( A [,) B ) | 
						
							| 42 | 41 | a1i |  |-  ( ph -> X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) = X_ k e. X ( A [,) B ) ) | 
						
							| 43 | 35 42 | eqtr2d |  |-  ( ph -> X_ k e. X ( A [,) B ) = X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) | 
						
							| 44 | 1 4 21 | fmptdf |  |-  ( ph -> ( k e. X |-> A ) : X --> RR ) | 
						
							| 45 | 1 5 31 | fmptdf |  |-  ( ph -> ( k e. X |-> B ) : X --> RR ) | 
						
							| 46 | 2 3 44 45 | hoimbl |  |-  ( ph -> X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) e. S ) | 
						
							| 47 | 43 46 | eqeltrd |  |-  ( ph -> X_ k e. X ( A [,) B ) e. S ) |