Step |
Hyp |
Ref |
Expression |
1 |
|
hoimbl2.k |
|- F/ k ph |
2 |
|
hoimbl2.x |
|- ( ph -> X e. Fin ) |
3 |
|
hoimbl2.s |
|- S = dom ( voln ` X ) |
4 |
|
hoimbl2.a |
|- ( ( ph /\ k e. X ) -> A e. RR ) |
5 |
|
hoimbl2.b |
|- ( ( ph /\ k e. X ) -> B e. RR ) |
6 |
|
simpr |
|- ( ( ph /\ j e. X ) -> j e. X ) |
7 |
|
nfv |
|- F/ k j e. X |
8 |
1 7
|
nfan |
|- F/ k ( ph /\ j e. X ) |
9 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ A |
10 |
|
nfcv |
|- F/_ k RR |
11 |
9 10
|
nfel |
|- F/ k [_ j / k ]_ A e. RR |
12 |
8 11
|
nfim |
|- F/ k ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) |
13 |
|
eleq1w |
|- ( k = j -> ( k e. X <-> j e. X ) ) |
14 |
13
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. X ) <-> ( ph /\ j e. X ) ) ) |
15 |
|
csbeq1a |
|- ( k = j -> A = [_ j / k ]_ A ) |
16 |
15
|
eleq1d |
|- ( k = j -> ( A e. RR <-> [_ j / k ]_ A e. RR ) ) |
17 |
14 16
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. X ) -> A e. RR ) <-> ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) ) ) |
18 |
12 17 4
|
chvarfv |
|- ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) |
19 |
|
nfcv |
|- F/_ k j |
20 |
19
|
nfcsb1 |
|- F/_ k [_ j / k ]_ A |
21 |
|
eqid |
|- ( k e. X |-> A ) = ( k e. X |-> A ) |
22 |
19 20 15 21
|
fvmptf |
|- ( ( j e. X /\ [_ j / k ]_ A e. RR ) -> ( ( k e. X |-> A ) ` j ) = [_ j / k ]_ A ) |
23 |
6 18 22
|
syl2anc |
|- ( ( ph /\ j e. X ) -> ( ( k e. X |-> A ) ` j ) = [_ j / k ]_ A ) |
24 |
19
|
nfcsb1 |
|- F/_ k [_ j / k ]_ B |
25 |
24 10
|
nfel |
|- F/ k [_ j / k ]_ B e. RR |
26 |
8 25
|
nfim |
|- F/ k ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) |
27 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
28 |
27
|
eleq1d |
|- ( k = j -> ( B e. RR <-> [_ j / k ]_ B e. RR ) ) |
29 |
14 28
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. X ) -> B e. RR ) <-> ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) ) ) |
30 |
26 29 5
|
chvarfv |
|- ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) |
31 |
|
eqid |
|- ( k e. X |-> B ) = ( k e. X |-> B ) |
32 |
19 24 27 31
|
fvmptf |
|- ( ( j e. X /\ [_ j / k ]_ B e. RR ) -> ( ( k e. X |-> B ) ` j ) = [_ j / k ]_ B ) |
33 |
6 30 32
|
syl2anc |
|- ( ( ph /\ j e. X ) -> ( ( k e. X |-> B ) ` j ) = [_ j / k ]_ B ) |
34 |
23 33
|
oveq12d |
|- ( ( ph /\ j e. X ) -> ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) |
35 |
34
|
ixpeq2dva |
|- ( ph -> X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) = X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) |
36 |
|
nfcv |
|- F/_ j ( A [,) B ) |
37 |
|
nfcv |
|- F/_ k [,) |
38 |
9 37 24
|
nfov |
|- F/_ k ( [_ j / k ]_ A [,) [_ j / k ]_ B ) |
39 |
15 27
|
oveq12d |
|- ( k = j -> ( A [,) B ) = ( [_ j / k ]_ A [,) [_ j / k ]_ B ) ) |
40 |
36 38 39
|
cbvixp |
|- X_ k e. X ( A [,) B ) = X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) |
41 |
40
|
eqcomi |
|- X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) = X_ k e. X ( A [,) B ) |
42 |
41
|
a1i |
|- ( ph -> X_ j e. X ( [_ j / k ]_ A [,) [_ j / k ]_ B ) = X_ k e. X ( A [,) B ) ) |
43 |
35 42
|
eqtr2d |
|- ( ph -> X_ k e. X ( A [,) B ) = X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) ) |
44 |
1 4 21
|
fmptdf |
|- ( ph -> ( k e. X |-> A ) : X --> RR ) |
45 |
1 5 31
|
fmptdf |
|- ( ph -> ( k e. X |-> B ) : X --> RR ) |
46 |
2 3 44 45
|
hoimbl |
|- ( ph -> X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,) ( ( k e. X |-> B ) ` j ) ) e. S ) |
47 |
43 46
|
eqeltrd |
|- ( ph -> X_ k e. X ( A [,) B ) e. S ) |