| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcprod1.1 |
⊢ Ⅎ 𝑘 𝐴 |
| 2 |
|
df-prod |
⊢ ∏ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 3 |
|
nfcv |
⊢ Ⅎ 𝑘 ℤ |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ℤ≥ ‘ 𝑚 ) |
| 5 |
1 4
|
nfss |
⊢ Ⅎ 𝑘 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑘 𝑦 ≠ 0 |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑛 |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑘 · |
| 9 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
| 10 |
7 8 9
|
nfseq |
⊢ Ⅎ 𝑘 seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑘 ⇝ |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑦 |
| 13 |
10 11 12
|
nfbr |
⊢ Ⅎ 𝑘 seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 |
| 14 |
6 13
|
nfan |
⊢ Ⅎ 𝑘 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) |
| 15 |
14
|
nfex |
⊢ Ⅎ 𝑘 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) |
| 16 |
4 15
|
nfrexw |
⊢ Ⅎ 𝑘 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑚 |
| 18 |
17 8 9
|
nfseq |
⊢ Ⅎ 𝑘 seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) |
| 19 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
| 20 |
18 11 19
|
nfbr |
⊢ Ⅎ 𝑘 seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 |
| 21 |
5 16 20
|
nf3an |
⊢ Ⅎ 𝑘 ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) |
| 22 |
3 21
|
nfrexw |
⊢ Ⅎ 𝑘 ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) |
| 23 |
|
nfcv |
⊢ Ⅎ 𝑘 ℕ |
| 24 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑓 |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 1 ... 𝑚 ) |
| 26 |
24 25 1
|
nff1o |
⊢ Ⅎ 𝑘 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
| 28 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 |
| 29 |
23 28
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
| 30 |
27 8 29
|
nfseq |
⊢ Ⅎ 𝑘 seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) |
| 31 |
30 17
|
nffv |
⊢ Ⅎ 𝑘 ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
| 32 |
31
|
nfeq2 |
⊢ Ⅎ 𝑘 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
| 33 |
26 32
|
nfan |
⊢ Ⅎ 𝑘 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 34 |
33
|
nfex |
⊢ Ⅎ 𝑘 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 35 |
23 34
|
nfrexw |
⊢ Ⅎ 𝑘 ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 36 |
22 35
|
nfor |
⊢ Ⅎ 𝑘 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
| 37 |
36
|
nfiotaw |
⊢ Ⅎ 𝑘 ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 38 |
2 37
|
nfcxfr |
⊢ Ⅎ 𝑘 ∏ 𝑘 ∈ 𝐴 𝐵 |