| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recnnltrp.1 |
|- N = ( ( |_ ` ( 1 / E ) ) + 1 ) |
| 2 |
|
rpreccl |
|- ( E e. RR+ -> ( 1 / E ) e. RR+ ) |
| 3 |
2
|
rpred |
|- ( E e. RR+ -> ( 1 / E ) e. RR ) |
| 4 |
2
|
rpge0d |
|- ( E e. RR+ -> 0 <_ ( 1 / E ) ) |
| 5 |
|
flge0nn0 |
|- ( ( ( 1 / E ) e. RR /\ 0 <_ ( 1 / E ) ) -> ( |_ ` ( 1 / E ) ) e. NN0 ) |
| 6 |
3 4 5
|
syl2anc |
|- ( E e. RR+ -> ( |_ ` ( 1 / E ) ) e. NN0 ) |
| 7 |
|
nn0p1nn |
|- ( ( |_ ` ( 1 / E ) ) e. NN0 -> ( ( |_ ` ( 1 / E ) ) + 1 ) e. NN ) |
| 8 |
6 7
|
syl |
|- ( E e. RR+ -> ( ( |_ ` ( 1 / E ) ) + 1 ) e. NN ) |
| 9 |
1 8
|
eqeltrid |
|- ( E e. RR+ -> N e. NN ) |
| 10 |
|
flltp1 |
|- ( ( 1 / E ) e. RR -> ( 1 / E ) < ( ( |_ ` ( 1 / E ) ) + 1 ) ) |
| 11 |
3 10
|
syl |
|- ( E e. RR+ -> ( 1 / E ) < ( ( |_ ` ( 1 / E ) ) + 1 ) ) |
| 12 |
11 1
|
breqtrrdi |
|- ( E e. RR+ -> ( 1 / E ) < N ) |
| 13 |
9
|
nnrpd |
|- ( E e. RR+ -> N e. RR+ ) |
| 14 |
2 13
|
ltrecd |
|- ( E e. RR+ -> ( ( 1 / E ) < N <-> ( 1 / N ) < ( 1 / ( 1 / E ) ) ) ) |
| 15 |
12 14
|
mpbid |
|- ( E e. RR+ -> ( 1 / N ) < ( 1 / ( 1 / E ) ) ) |
| 16 |
|
rpcn |
|- ( E e. RR+ -> E e. CC ) |
| 17 |
|
rpne0 |
|- ( E e. RR+ -> E =/= 0 ) |
| 18 |
16 17
|
recrecd |
|- ( E e. RR+ -> ( 1 / ( 1 / E ) ) = E ) |
| 19 |
15 18
|
breqtrd |
|- ( E e. RR+ -> ( 1 / N ) < E ) |
| 20 |
9 19
|
jca |
|- ( E e. RR+ -> ( N e. NN /\ ( 1 / N ) < E ) ) |