Metamath Proof Explorer


Theorem iccvonmbl

Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iccvonmbl.x φ X Fin
iccvonmbl.s S = dom voln X
iccvonmbl.a φ A : X
iccvonmbl.b φ B : X
Assertion iccvonmbl φ i X A i B i S

Proof

Step Hyp Ref Expression
1 iccvonmbl.x φ X Fin
2 iccvonmbl.s S = dom voln X
3 iccvonmbl.a φ A : X
4 iccvonmbl.b φ B : X
5 fveq2 j = i A j = A i
6 5 oveq1d j = i A j 1 n = A i 1 n
7 6 cbvmptv j X A j 1 n = i X A i 1 n
8 7 mpteq2i n j X A j 1 n = n i X A i 1 n
9 fveq2 j = i B j = B i
10 9 oveq1d j = i B j + 1 n = B i + 1 n
11 10 cbvmptv j X B j + 1 n = i X B i + 1 n
12 11 mpteq2i n j X B j + 1 n = n i X B i + 1 n
13 1 2 3 4 8 12 iccvonmbllem φ i X A i B i S