Metamath Proof Explorer


Theorem iccvonmbllem

Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iccvonmbllem.x ( 𝜑𝑋 ∈ Fin )
iccvonmbllem.s 𝑆 = dom ( voln ‘ 𝑋 )
iccvonmbllem.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
iccvonmbllem.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
iccvonmbllem.c 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑖𝑋 ↦ ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) ) )
iccvonmbllem.d 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑖𝑋 ↦ ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) ) )
Assertion iccvonmbllem ( 𝜑X 𝑖𝑋 ( ( 𝐴𝑖 ) [,] ( 𝐵𝑖 ) ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 iccvonmbllem.x ( 𝜑𝑋 ∈ Fin )
2 iccvonmbllem.s 𝑆 = dom ( voln ‘ 𝑋 )
3 iccvonmbllem.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
4 iccvonmbllem.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
5 iccvonmbllem.c 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑖𝑋 ↦ ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) ) )
6 iccvonmbllem.d 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑖𝑋 ↦ ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) ) )
7 5 a1i ( 𝜑𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑖𝑋 ↦ ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) ) ) )
8 1 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑋 ∈ Fin )
9 8 mptexd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑖𝑋 ↦ ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) ) ∈ V )
10 7 9 fvmpt2d ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶𝑛 ) = ( 𝑖𝑋 ↦ ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) ) )
11 3 ffvelrnda ( ( 𝜑𝑖𝑋 ) → ( 𝐴𝑖 ) ∈ ℝ )
12 11 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑖𝑋 ) → ( 𝐴𝑖 ) ∈ ℝ )
13 nnrecre ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ )
14 13 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑖𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ )
15 12 14 resubcld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑖𝑋 ) → ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) ∈ ℝ )
16 10 15 fvmpt2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑖𝑋 ) → ( ( 𝐶𝑛 ) ‘ 𝑖 ) = ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) )
17 16 an32s ( ( ( 𝜑𝑖𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶𝑛 ) ‘ 𝑖 ) = ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) )
18 6 a1i ( 𝜑𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑖𝑋 ↦ ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) ) ) )
19 8 mptexd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑖𝑋 ↦ ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) ) ∈ V )
20 18 19 fvmpt2d ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐷𝑛 ) = ( 𝑖𝑋 ↦ ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) ) )
21 4 ffvelrnda ( ( 𝜑𝑖𝑋 ) → ( 𝐵𝑖 ) ∈ ℝ )
22 21 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑖𝑋 ) → ( 𝐵𝑖 ) ∈ ℝ )
23 22 14 readdcld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑖𝑋 ) → ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) ∈ ℝ )
24 20 23 fvmpt2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑖𝑋 ) → ( ( 𝐷𝑛 ) ‘ 𝑖 ) = ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) )
25 24 an32s ( ( ( 𝜑𝑖𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷𝑛 ) ‘ 𝑖 ) = ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) )
26 17 25 oveq12d ( ( ( 𝜑𝑖𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝐶𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷𝑛 ) ‘ 𝑖 ) ) = ( ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) (,) ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) ) )
27 26 iineq2dv ( ( 𝜑𝑖𝑋 ) → 𝑛 ∈ ℕ ( ( ( 𝐶𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷𝑛 ) ‘ 𝑖 ) ) = 𝑛 ∈ ℕ ( ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) (,) ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) ) )
28 11 21 iooiinicc ( ( 𝜑𝑖𝑋 ) → 𝑛 ∈ ℕ ( ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) (,) ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) ) = ( ( 𝐴𝑖 ) [,] ( 𝐵𝑖 ) ) )
29 27 28 eqtrd ( ( 𝜑𝑖𝑋 ) → 𝑛 ∈ ℕ ( ( ( 𝐶𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷𝑛 ) ‘ 𝑖 ) ) = ( ( 𝐴𝑖 ) [,] ( 𝐵𝑖 ) ) )
30 29 ixpeq2dva ( 𝜑X 𝑖𝑋 𝑛 ∈ ℕ ( ( ( 𝐶𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷𝑛 ) ‘ 𝑖 ) ) = X 𝑖𝑋 ( ( 𝐴𝑖 ) [,] ( 𝐵𝑖 ) ) )
31 30 eqcomd ( 𝜑X 𝑖𝑋 ( ( 𝐴𝑖 ) [,] ( 𝐵𝑖 ) ) = X 𝑖𝑋 𝑛 ∈ ℕ ( ( ( 𝐶𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷𝑛 ) ‘ 𝑖 ) ) )
32 eqidd ( 𝜑X 𝑖𝑋 ( ( 𝐴𝑖 ) [,] ( 𝐵𝑖 ) ) = X 𝑖𝑋 ( ( 𝐴𝑖 ) [,] ( 𝐵𝑖 ) ) )
33 nnn0 ℕ ≠ ∅
34 33 a1i ( 𝜑 → ℕ ≠ ∅ )
35 ixpiin ( ℕ ≠ ∅ → X 𝑖𝑋 𝑛 ∈ ℕ ( ( ( 𝐶𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷𝑛 ) ‘ 𝑖 ) ) = 𝑛 ∈ ℕ X 𝑖𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷𝑛 ) ‘ 𝑖 ) ) )
36 34 35 syl ( 𝜑X 𝑖𝑋 𝑛 ∈ ℕ ( ( ( 𝐶𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷𝑛 ) ‘ 𝑖 ) ) = 𝑛 ∈ ℕ X 𝑖𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷𝑛 ) ‘ 𝑖 ) ) )
37 31 32 36 3eqtr3d ( 𝜑X 𝑖𝑋 ( ( 𝐴𝑖 ) [,] ( 𝐵𝑖 ) ) = 𝑛 ∈ ℕ X 𝑖𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷𝑛 ) ‘ 𝑖 ) ) )
38 1 2 dmovnsal ( 𝜑𝑆 ∈ SAlg )
39 nnct ℕ ≼ ω
40 39 a1i ( 𝜑 → ℕ ≼ ω )
41 15 fmpttd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑖𝑋 ↦ ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ )
42 ressxr ℝ ⊆ ℝ*
43 42 a1i ( ( 𝜑𝑛 ∈ ℕ ) → ℝ ⊆ ℝ* )
44 41 43 fssd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑖𝑋 ↦ ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ* )
45 10 feq1d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐶𝑛 ) : 𝑋 ⟶ ℝ* ↔ ( 𝑖𝑋 ↦ ( ( 𝐴𝑖 ) − ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ* ) )
46 44 45 mpbird ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶𝑛 ) : 𝑋 ⟶ ℝ* )
47 23 fmpttd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑖𝑋 ↦ ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ )
48 47 43 fssd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑖𝑋 ↦ ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ* )
49 20 feq1d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐷𝑛 ) : 𝑋 ⟶ ℝ* ↔ ( 𝑖𝑋 ↦ ( ( 𝐵𝑖 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ* ) )
50 48 49 mpbird ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐷𝑛 ) : 𝑋 ⟶ ℝ* )
51 8 2 46 50 ioovonmbl ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑖𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷𝑛 ) ‘ 𝑖 ) ) ∈ 𝑆 )
52 38 40 34 51 saliincl ( 𝜑 𝑛 ∈ ℕ X 𝑖𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷𝑛 ) ‘ 𝑖 ) ) ∈ 𝑆 )
53 37 52 eqeltrd ( 𝜑X 𝑖𝑋 ( ( 𝐴𝑖 ) [,] ( 𝐵𝑖 ) ) ∈ 𝑆 )