Step |
Hyp |
Ref |
Expression |
1 |
|
iccvonmbllem.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
iccvonmbllem.s |
⊢ 𝑆 = dom ( voln ‘ 𝑋 ) |
3 |
|
iccvonmbllem.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
4 |
|
iccvonmbllem.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
5 |
|
iccvonmbllem.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) ) ) |
6 |
|
iccvonmbllem.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ) ) |
7 |
5
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) ) ) ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ Fin ) |
9 |
8
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) ) ∈ V ) |
10 |
7 9
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) = ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) ) ) |
11 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℝ ) |
12 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℝ ) |
13 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
15 |
12 14
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) ∈ ℝ ) |
16 |
10 15
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) = ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) ) |
17 |
16
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) = ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) ) |
18 |
6
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ) ) ) |
19 |
8
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ) ∈ V ) |
20 |
18 19
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ) ) |
21 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
22 |
21
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
23 |
22 14
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
24 |
20 23
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) = ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ) |
25 |
24
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) = ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ) |
26 |
17 25
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) ) = ( ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) (,) ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ) ) |
27 |
26
|
iineq2dv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ∩ 𝑛 ∈ ℕ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) ) = ∩ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) (,) ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ) ) |
28 |
11 21
|
iooiinicc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ∩ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) (,) ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ) = ( ( 𝐴 ‘ 𝑖 ) [,] ( 𝐵 ‘ 𝑖 ) ) ) |
29 |
27 28
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ∩ 𝑛 ∈ ℕ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) ) = ( ( 𝐴 ‘ 𝑖 ) [,] ( 𝐵 ‘ 𝑖 ) ) ) |
30 |
29
|
ixpeq2dva |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) ) = X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,] ( 𝐵 ‘ 𝑖 ) ) ) |
31 |
30
|
eqcomd |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,] ( 𝐵 ‘ 𝑖 ) ) = X 𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) ) ) |
32 |
|
eqidd |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,] ( 𝐵 ‘ 𝑖 ) ) = X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,] ( 𝐵 ‘ 𝑖 ) ) ) |
33 |
|
nnn0 |
⊢ ℕ ≠ ∅ |
34 |
33
|
a1i |
⊢ ( 𝜑 → ℕ ≠ ∅ ) |
35 |
|
ixpiin |
⊢ ( ℕ ≠ ∅ → X 𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) ) = ∩ 𝑛 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) ) ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) ) = ∩ 𝑛 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) ) ) |
37 |
31 32 36
|
3eqtr3d |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,] ( 𝐵 ‘ 𝑖 ) ) = ∩ 𝑛 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) ) ) |
38 |
1 2
|
dmovnsal |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
39 |
|
nnct |
⊢ ℕ ≼ ω |
40 |
39
|
a1i |
⊢ ( 𝜑 → ℕ ≼ ω ) |
41 |
15
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) |
42 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
43 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ℝ ⊆ ℝ* ) |
44 |
41 43
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ* ) |
45 |
10
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ* ↔ ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑖 ) − ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ* ) ) |
46 |
44 45
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ* ) |
47 |
23
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) |
48 |
47 43
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ* ) |
49 |
20
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) : 𝑋 ⟶ ℝ* ↔ ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑖 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ* ) ) |
50 |
48 49
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) : 𝑋 ⟶ ℝ* ) |
51 |
8 2 46 50
|
ioovonmbl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑖 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ 𝑆 ) |
52 |
38 40 34 51
|
saliincl |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑖 ) (,) ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ 𝑆 ) |
53 |
37 52
|
eqeltrd |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,] ( 𝐵 ‘ 𝑖 ) ) ∈ 𝑆 ) |