Description: If the iota over a wff ph is not empty, the alternate iota over ph is a set. (Contributed by AV, 25-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | iotan0aiotaex | |- ( ( iota x ph ) =/= (/) -> ( iota' x ph ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotanul | |- ( -. E! x ph -> ( iota x ph ) = (/) ) |
|
2 | 1 | necon1ai | |- ( ( iota x ph ) =/= (/) -> E! x ph ) |
3 | aiotaexb | |- ( E! x ph <-> ( iota' x ph ) e. _V ) |
|
4 | 2 3 | sylib | |- ( ( iota x ph ) =/= (/) -> ( iota' x ph ) e. _V ) |