Description: The alternate iota over a wff ph is a set iff the iota and the alternate iota over ph are equal. (Contributed by AV, 25-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | aiotaexaiotaiota | |- ( ( iota' x ph ) e. _V <-> ( iota x ph ) = ( iota' x ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aiotaexb | |- ( E! x ph <-> ( iota' x ph ) e. _V ) |
|
2 | reuaiotaiota | |- ( E! x ph <-> ( iota x ph ) = ( iota' x ph ) ) |
|
3 | 1 2 | bitr3i | |- ( ( iota' x ph ) e. _V <-> ( iota x ph ) = ( iota' x ph ) ) |