Metamath Proof Explorer


Theorem aiotaexaiotaiota

Description: The alternate iota over a wff ph is a set iff the iota and the alternate iota over ph are equal. (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion aiotaexaiotaiota
|- ( ( iota' x ph ) e. _V <-> ( iota x ph ) = ( iota' x ph ) )

Proof

Step Hyp Ref Expression
1 aiotaexb
 |-  ( E! x ph <-> ( iota' x ph ) e. _V )
2 reuaiotaiota
 |-  ( E! x ph <-> ( iota x ph ) = ( iota' x ph ) )
3 1 2 bitr3i
 |-  ( ( iota' x ph ) e. _V <-> ( iota x ph ) = ( iota' x ph ) )