Metamath Proof Explorer


Theorem aiotaexaiotaiota

Description: The alternate iota over a wff ph is a set iff the iota and the alternate iota over ph are equal. (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion aiotaexaiotaiota ι V ι x | φ = ι

Proof

Step Hyp Ref Expression
1 aiotaexb ∃! x φ ι V
2 reuaiotaiota ∃! x φ ι x | φ = ι
3 1 2 bitr3i ι V ι x | φ = ι