Metamath Proof Explorer


Theorem aiotaval

Description: Theorem 8.19 in Quine p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion aiotaval x φ x = y ι = y

Proof

Step Hyp Ref Expression
1 eusnsn ∃! z z = y
2 eqcom y = z z = y
3 2 eubii ∃! z y = z ∃! z z = y
4 1 3 mpbir ∃! z y = z
5 eqeq1 x | φ = y x | φ = z y = z
6 5 eubidv x | φ = y ∃! z x | φ = z ∃! z y = z
7 4 6 mpbiri x | φ = y ∃! z x | φ = z
8 absn x | φ = y x φ x = y
9 reuabaiotaiota ∃! z x | φ = z ι x | φ = ι
10 eqcom ι x | φ = ι ι = ι x | φ
11 9 10 bitri ∃! z x | φ = z ι = ι x | φ
12 7 8 11 3imtr3i x φ x = y ι = ι x | φ
13 iotaval x φ x = y ι x | φ = y
14 12 13 eqtrd x φ x = y ι = y