Description: Theorem 8.19 in Quine p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | aiotaval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eusnsn | |
|
2 | eqcom | |
|
3 | 2 | eubii | |
4 | 1 3 | mpbir | |
5 | eqeq1 | |
|
6 | 5 | eubidv | |
7 | 4 6 | mpbiri | |
8 | absn | |
|
9 | reuabaiotaiota | |
|
10 | eqcom | |
|
11 | 9 10 | bitri | |
12 | 7 8 11 | 3imtr3i | |
13 | iotaval | |
|
14 | 12 13 | eqtrd | |