Metamath Proof Explorer


Theorem aiotaval

Description: Theorem 8.19 in Quine p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion aiotaval xφx=yι=y

Proof

Step Hyp Ref Expression
1 eusnsn ∃!zz=y
2 eqcom y=zz=y
3 2 eubii ∃!zy=z∃!zz=y
4 1 3 mpbir ∃!zy=z
5 eqeq1 x|φ=yx|φ=zy=z
6 5 eubidv x|φ=y∃!zx|φ=z∃!zy=z
7 4 6 mpbiri x|φ=y∃!zx|φ=z
8 absn x|φ=yxφx=y
9 reuabaiotaiota ∃!zx|φ=zιx|φ=ι
10 eqcom ιx|φ=ιι=ιx|φ
11 9 10 bitri ∃!zx|φ=zι=ιx|φ
12 7 8 11 3imtr3i xφx=yι=ιx|φ
13 iotaval xφx=yιx|φ=y
14 12 13 eqtrd xφx=yι=y