| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eusnsn |
|- E! z { z } = { y } |
| 2 |
|
eqcom |
|- ( { y } = { z } <-> { z } = { y } ) |
| 3 |
2
|
eubii |
|- ( E! z { y } = { z } <-> E! z { z } = { y } ) |
| 4 |
1 3
|
mpbir |
|- E! z { y } = { z } |
| 5 |
|
eqeq1 |
|- ( { x | ph } = { y } -> ( { x | ph } = { z } <-> { y } = { z } ) ) |
| 6 |
5
|
eubidv |
|- ( { x | ph } = { y } -> ( E! z { x | ph } = { z } <-> E! z { y } = { z } ) ) |
| 7 |
4 6
|
mpbiri |
|- ( { x | ph } = { y } -> E! z { x | ph } = { z } ) |
| 8 |
|
absn |
|- ( { x | ph } = { y } <-> A. x ( ph <-> x = y ) ) |
| 9 |
|
reuabaiotaiota |
|- ( E! z { x | ph } = { z } <-> ( iota x ph ) = ( iota' x ph ) ) |
| 10 |
|
eqcom |
|- ( ( iota x ph ) = ( iota' x ph ) <-> ( iota' x ph ) = ( iota x ph ) ) |
| 11 |
9 10
|
bitri |
|- ( E! z { x | ph } = { z } <-> ( iota' x ph ) = ( iota x ph ) ) |
| 12 |
7 8 11
|
3imtr3i |
|- ( A. x ( ph <-> x = y ) -> ( iota' x ph ) = ( iota x ph ) ) |
| 13 |
|
iotaval |
|- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) |
| 14 |
12 13
|
eqtrd |
|- ( A. x ( ph <-> x = y ) -> ( iota' x ph ) = y ) |