Metamath Proof Explorer


Theorem aiotaval

Description: Theorem 8.19 in Quine p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion aiotaval
|- ( A. x ( ph <-> x = y ) -> ( iota' x ph ) = y )

Proof

Step Hyp Ref Expression
1 eusnsn
 |-  E! z { z } = { y }
2 eqcom
 |-  ( { y } = { z } <-> { z } = { y } )
3 2 eubii
 |-  ( E! z { y } = { z } <-> E! z { z } = { y } )
4 1 3 mpbir
 |-  E! z { y } = { z }
5 eqeq1
 |-  ( { x | ph } = { y } -> ( { x | ph } = { z } <-> { y } = { z } ) )
6 5 eubidv
 |-  ( { x | ph } = { y } -> ( E! z { x | ph } = { z } <-> E! z { y } = { z } ) )
7 4 6 mpbiri
 |-  ( { x | ph } = { y } -> E! z { x | ph } = { z } )
8 absn
 |-  ( { x | ph } = { y } <-> A. x ( ph <-> x = y ) )
9 reuabaiotaiota
 |-  ( E! z { x | ph } = { z } <-> ( iota x ph ) = ( iota' x ph ) )
10 eqcom
 |-  ( ( iota x ph ) = ( iota' x ph ) <-> ( iota' x ph ) = ( iota x ph ) )
11 9 10 bitri
 |-  ( E! z { x | ph } = { z } <-> ( iota' x ph ) = ( iota x ph ) )
12 7 8 11 3imtr3i
 |-  ( A. x ( ph <-> x = y ) -> ( iota' x ph ) = ( iota x ph ) )
13 iotaval
 |-  ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y )
14 12 13 eqtrd
 |-  ( A. x ( ph <-> x = y ) -> ( iota' x ph ) = y )