Metamath Proof Explorer


Theorem aiota0def

Description: Example for a defined alternate iota being the empty set, i.e., A. y x C_ y is a wff satisfied by a unique value x , namely x = (/) (the empty set is the one and only set which is a subset of every set). This corresponds to iota0def . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion aiota0def
|- ( iota' x A. y x C_ y ) = (/)

Proof

Step Hyp Ref Expression
1 0ex
 |-  (/) e. _V
2 al0ssb
 |-  ( A. y x C_ y <-> x = (/) )
3 2 ax-gen
 |-  A. x ( A. y x C_ y <-> x = (/) )
4 eqeq2
 |-  ( z = (/) -> ( x = z <-> x = (/) ) )
5 4 bibi2d
 |-  ( z = (/) -> ( ( A. y x C_ y <-> x = z ) <-> ( A. y x C_ y <-> x = (/) ) ) )
6 5 albidv
 |-  ( z = (/) -> ( A. x ( A. y x C_ y <-> x = z ) <-> A. x ( A. y x C_ y <-> x = (/) ) ) )
7 eqeq2
 |-  ( z = (/) -> ( ( iota' x A. y x C_ y ) = z <-> ( iota' x A. y x C_ y ) = (/) ) )
8 6 7 imbi12d
 |-  ( z = (/) -> ( ( A. x ( A. y x C_ y <-> x = z ) -> ( iota' x A. y x C_ y ) = z ) <-> ( A. x ( A. y x C_ y <-> x = (/) ) -> ( iota' x A. y x C_ y ) = (/) ) ) )
9 aiotaval
 |-  ( A. x ( A. y x C_ y <-> x = z ) -> ( iota' x A. y x C_ y ) = z )
10 8 9 vtoclg
 |-  ( (/) e. _V -> ( A. x ( A. y x C_ y <-> x = (/) ) -> ( iota' x A. y x C_ y ) = (/) ) )
11 1 3 10 mp2
 |-  ( iota' x A. y x C_ y ) = (/)