Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
al0ssb |
⊢ ( ∀ 𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅ ) |
3 |
2
|
ax-gen |
⊢ ∀ 𝑥 ( ∀ 𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅ ) |
4 |
|
eqeq2 |
⊢ ( 𝑧 = ∅ → ( 𝑥 = 𝑧 ↔ 𝑥 = ∅ ) ) |
5 |
4
|
bibi2d |
⊢ ( 𝑧 = ∅ → ( ( ∀ 𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧 ) ↔ ( ∀ 𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅ ) ) ) |
6 |
5
|
albidv |
⊢ ( 𝑧 = ∅ → ( ∀ 𝑥 ( ∀ 𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧 ) ↔ ∀ 𝑥 ( ∀ 𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅ ) ) ) |
7 |
|
eqeq2 |
⊢ ( 𝑧 = ∅ → ( ( ℩' 𝑥 ∀ 𝑦 𝑥 ⊆ 𝑦 ) = 𝑧 ↔ ( ℩' 𝑥 ∀ 𝑦 𝑥 ⊆ 𝑦 ) = ∅ ) ) |
8 |
6 7
|
imbi12d |
⊢ ( 𝑧 = ∅ → ( ( ∀ 𝑥 ( ∀ 𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧 ) → ( ℩' 𝑥 ∀ 𝑦 𝑥 ⊆ 𝑦 ) = 𝑧 ) ↔ ( ∀ 𝑥 ( ∀ 𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅ ) → ( ℩' 𝑥 ∀ 𝑦 𝑥 ⊆ 𝑦 ) = ∅ ) ) ) |
9 |
|
aiotaval |
⊢ ( ∀ 𝑥 ( ∀ 𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧 ) → ( ℩' 𝑥 ∀ 𝑦 𝑥 ⊆ 𝑦 ) = 𝑧 ) |
10 |
8 9
|
vtoclg |
⊢ ( ∅ ∈ V → ( ∀ 𝑥 ( ∀ 𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅ ) → ( ℩' 𝑥 ∀ 𝑦 𝑥 ⊆ 𝑦 ) = ∅ ) ) |
11 |
1 3 10
|
mp2 |
⊢ ( ℩' 𝑥 ∀ 𝑦 𝑥 ⊆ 𝑦 ) = ∅ |