Metamath Proof Explorer


Theorem aiotaval

Description: Theorem 8.19 in Quine p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion aiotaval ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ℩' 𝑥 𝜑 ) = 𝑦 )

Proof

Step Hyp Ref Expression
1 eusnsn ∃! 𝑧 { 𝑧 } = { 𝑦 }
2 eqcom ( { 𝑦 } = { 𝑧 } ↔ { 𝑧 } = { 𝑦 } )
3 2 eubii ( ∃! 𝑧 { 𝑦 } = { 𝑧 } ↔ ∃! 𝑧 { 𝑧 } = { 𝑦 } )
4 1 3 mpbir ∃! 𝑧 { 𝑦 } = { 𝑧 }
5 eqeq1 ( { 𝑥𝜑 } = { 𝑦 } → ( { 𝑥𝜑 } = { 𝑧 } ↔ { 𝑦 } = { 𝑧 } ) )
6 5 eubidv ( { 𝑥𝜑 } = { 𝑦 } → ( ∃! 𝑧 { 𝑥𝜑 } = { 𝑧 } ↔ ∃! 𝑧 { 𝑦 } = { 𝑧 } ) )
7 4 6 mpbiri ( { 𝑥𝜑 } = { 𝑦 } → ∃! 𝑧 { 𝑥𝜑 } = { 𝑧 } )
8 absn ( { 𝑥𝜑 } = { 𝑦 } ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) )
9 reuabaiotaiota ( ∃! 𝑧 { 𝑥𝜑 } = { 𝑧 } ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) )
10 eqcom ( ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) ↔ ( ℩' 𝑥 𝜑 ) = ( ℩ 𝑥 𝜑 ) )
11 9 10 bitri ( ∃! 𝑧 { 𝑥𝜑 } = { 𝑧 } ↔ ( ℩' 𝑥 𝜑 ) = ( ℩ 𝑥 𝜑 ) )
12 7 8 11 3imtr3i ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ℩' 𝑥 𝜑 ) = ( ℩ 𝑥 𝜑 ) )
13 iotaval ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 )
14 12 13 eqtrd ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ℩' 𝑥 𝜑 ) = 𝑦 )