Metamath Proof Explorer


Theorem eusnsn

Description: There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion eusnsn ∃! 𝑥 { 𝑥 } = { 𝑦 }

Proof

Step Hyp Ref Expression
1 equequ2 ( 𝑧 = 𝑦 → ( 𝑥 = 𝑧𝑥 = 𝑦 ) )
2 1 bibi2d ( 𝑧 = 𝑦 → ( ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑧 ) ↔ ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) ) )
3 2 albidv ( 𝑧 = 𝑦 → ( ∀ 𝑥 ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑧 ) ↔ ∀ 𝑥 ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) ) )
4 sneqbg ( 𝑥 ∈ V → ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) )
5 4 elv ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 )
6 5 ax-gen 𝑥 ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 )
7 3 6 speivw 𝑧𝑥 ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑧 )
8 eu6 ( ∃! 𝑥 { 𝑥 } = { 𝑦 } ↔ ∃ 𝑧𝑥 ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑧 ) )
9 7 8 mpbir ∃! 𝑥 { 𝑥 } = { 𝑦 }