Step |
Hyp |
Ref |
Expression |
1 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
2 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑦 } ↔ 𝑥 = 𝑦 ) |
3 |
1 2
|
bibi12i |
⊢ ( ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑥 ∈ { 𝑦 } ) ↔ ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
4 |
|
biimpr |
⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |
5 |
3 4
|
sylbi |
⊢ ( ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑥 ∈ { 𝑦 } ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |
6 |
5
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑥 ∈ { 𝑦 } ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
7 |
|
nfab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝑦 } |
9 |
7 8
|
cleqf |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑥 ∈ { 𝑦 } ) ) |
10 |
|
sb6 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
11 |
6 9 10
|
3imtr4i |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } → [ 𝑦 / 𝑥 ] 𝜑 ) |