Metamath Proof Explorer


Theorem absnsb

Description: If the class abstraction { x | ph } associated with the wff ph is a singleton, the wff is true for the singleton element. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion absnsb ( { 𝑥𝜑 } = { 𝑦 } → [ 𝑦 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 abid ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 )
2 velsn ( 𝑥 ∈ { 𝑦 } ↔ 𝑥 = 𝑦 )
3 1 2 bibi12i ( ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝑥 ∈ { 𝑦 } ) ↔ ( 𝜑𝑥 = 𝑦 ) )
4 biimpr ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑥 = 𝑦𝜑 ) )
5 3 4 sylbi ( ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝑥 ∈ { 𝑦 } ) → ( 𝑥 = 𝑦𝜑 ) )
6 5 alimi ( ∀ 𝑥 ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝑥 ∈ { 𝑦 } ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
7 nfab1 𝑥 { 𝑥𝜑 }
8 nfcv 𝑥 { 𝑦 }
9 7 8 cleqf ( { 𝑥𝜑 } = { 𝑦 } ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝑥 ∈ { 𝑦 } ) )
10 sb6 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
11 6 9 10 3imtr4i ( { 𝑥𝜑 } = { 𝑦 } → [ 𝑦 / 𝑥 ] 𝜑 )