| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abid |
|- ( x e. { x | ph } <-> ph ) |
| 2 |
|
velsn |
|- ( x e. { y } <-> x = y ) |
| 3 |
1 2
|
bibi12i |
|- ( ( x e. { x | ph } <-> x e. { y } ) <-> ( ph <-> x = y ) ) |
| 4 |
|
biimpr |
|- ( ( ph <-> x = y ) -> ( x = y -> ph ) ) |
| 5 |
3 4
|
sylbi |
|- ( ( x e. { x | ph } <-> x e. { y } ) -> ( x = y -> ph ) ) |
| 6 |
5
|
alimi |
|- ( A. x ( x e. { x | ph } <-> x e. { y } ) -> A. x ( x = y -> ph ) ) |
| 7 |
|
nfab1 |
|- F/_ x { x | ph } |
| 8 |
|
nfcv |
|- F/_ x { y } |
| 9 |
7 8
|
cleqf |
|- ( { x | ph } = { y } <-> A. x ( x e. { x | ph } <-> x e. { y } ) ) |
| 10 |
|
sb6 |
|- ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) |
| 11 |
6 9 10
|
3imtr4i |
|- ( { x | ph } = { y } -> [ y / x ] ph ) |