Metamath Proof Explorer


Theorem absnsb

Description: If the class abstraction { x | ph } associated with the wff ph is a singleton, the wff is true for the singleton element. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion absnsb
|- ( { x | ph } = { y } -> [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 abid
 |-  ( x e. { x | ph } <-> ph )
2 velsn
 |-  ( x e. { y } <-> x = y )
3 1 2 bibi12i
 |-  ( ( x e. { x | ph } <-> x e. { y } ) <-> ( ph <-> x = y ) )
4 biimpr
 |-  ( ( ph <-> x = y ) -> ( x = y -> ph ) )
5 3 4 sylbi
 |-  ( ( x e. { x | ph } <-> x e. { y } ) -> ( x = y -> ph ) )
6 5 alimi
 |-  ( A. x ( x e. { x | ph } <-> x e. { y } ) -> A. x ( x = y -> ph ) )
7 nfab1
 |-  F/_ x { x | ph }
8 nfcv
 |-  F/_ x { y }
9 7 8 cleqf
 |-  ( { x | ph } = { y } <-> A. x ( x e. { x | ph } <-> x e. { y } ) )
10 sb6
 |-  ( [ y / x ] ph <-> A. x ( x = y -> ph ) )
11 6 9 10 3imtr4i
 |-  ( { x | ph } = { y } -> [ y / x ] ph )