Metamath Proof Explorer


Theorem absnsb

Description: If the class abstraction { x | ph } associated with the wff ph is a singleton, the wff is true for the singleton element. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion absnsb x | φ = y y x φ

Proof

Step Hyp Ref Expression
1 abid x x | φ φ
2 velsn x y x = y
3 1 2 bibi12i x x | φ x y φ x = y
4 biimpr φ x = y x = y φ
5 3 4 sylbi x x | φ x y x = y φ
6 5 alimi x x x | φ x y x x = y φ
7 nfab1 _ x x | φ
8 nfcv _ x y
9 7 8 cleqf x | φ = y x x x | φ x y
10 sb6 y x φ x x = y φ
11 6 9 10 3imtr4i x | φ = y y x φ