Metamath Proof Explorer


Theorem eusnsn

Description: There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion eusnsn ∃! x x = y

Proof

Step Hyp Ref Expression
1 equequ2 z = y x = z x = y
2 1 bibi2d z = y x = y x = z x = y x = y
3 2 albidv z = y x x = y x = z x x = y x = y
4 sneqbg x V x = y x = y
5 4 elv x = y x = y
6 5 ax-gen x x = y x = y
7 3 6 speivw z x x = y x = z
8 eu6 ∃! x x = y z x x = y x = z
9 7 8 mpbir ∃! x x = y