Description: The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | al0ssb | ⊢ ( ∀ 𝑦 𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | sseq2 | ⊢ ( 𝑦 = ∅ → ( 𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ ∅ ) ) | |
| 3 | ss0b | ⊢ ( 𝑋 ⊆ ∅ ↔ 𝑋 = ∅ ) | |
| 4 | 2 3 | bitrdi | ⊢ ( 𝑦 = ∅ → ( 𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅ ) ) |
| 5 | 1 4 | spcv | ⊢ ( ∀ 𝑦 𝑋 ⊆ 𝑦 → 𝑋 = ∅ ) |
| 6 | 0ss | ⊢ ∅ ⊆ 𝑦 | |
| 7 | 6 | ax-gen | ⊢ ∀ 𝑦 ∅ ⊆ 𝑦 |
| 8 | sseq1 | ⊢ ( 𝑋 = ∅ → ( 𝑋 ⊆ 𝑦 ↔ ∅ ⊆ 𝑦 ) ) | |
| 9 | 8 | albidv | ⊢ ( 𝑋 = ∅ → ( ∀ 𝑦 𝑋 ⊆ 𝑦 ↔ ∀ 𝑦 ∅ ⊆ 𝑦 ) ) |
| 10 | 7 9 | mpbiri | ⊢ ( 𝑋 = ∅ → ∀ 𝑦 𝑋 ⊆ 𝑦 ) |
| 11 | 5 10 | impbii | ⊢ ( ∀ 𝑦 𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅ ) |