Metamath Proof Explorer


Theorem al0ssb

Description: The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion al0ssb yXyX=

Proof

Step Hyp Ref Expression
1 0ex V
2 sseq2 y=XyX
3 ss0b XX=
4 2 3 bitrdi y=XyX=
5 1 4 spcv yXyX=
6 0ss y
7 6 ax-gen yy
8 sseq1 X=Xyy
9 8 albidv X=yXyyy
10 7 9 mpbiri X=yXy
11 5 10 impbii yXyX=