Metamath Proof Explorer


Theorem aiotaexaiotaiota

Description: The alternate iota over a wff ph is a set iff the iota and the alternate iota over ph are equal. (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion aiotaexaiotaiota ( ( ℩' 𝑥 𝜑 ) ∈ V ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 aiotaexb ( ∃! 𝑥 𝜑 ↔ ( ℩' 𝑥 𝜑 ) ∈ V )
2 reuaiotaiota ( ∃! 𝑥 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) )
3 1 2 bitr3i ( ( ℩' 𝑥 𝜑 ) ∈ V ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) )