Description: The alternate iota over a wff ph is a set iff the iota and the alternate iota over ph are equal. (Contributed by AV, 25-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | aiotaexaiotaiota | ⊢ ( ( ℩' 𝑥 𝜑 ) ∈ V ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aiotaexb | ⊢ ( ∃! 𝑥 𝜑 ↔ ( ℩' 𝑥 𝜑 ) ∈ V ) | |
| 2 | reuaiotaiota | ⊢ ( ∃! 𝑥 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) ) | |
| 3 | 1 2 | bitr3i | ⊢ ( ( ℩' 𝑥 𝜑 ) ∈ V ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) ) |