Metamath Proof Explorer


Theorem iotan0aiotaex

Description: If the iota over a wff ph is not empty, the alternate iota over ph is a set. (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion iotan0aiotaex ( ( ℩ 𝑥 𝜑 ) ≠ ∅ → ( ℩' 𝑥 𝜑 ) ∈ V )

Proof

Step Hyp Ref Expression
1 iotanul ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ )
2 1 necon1ai ( ( ℩ 𝑥 𝜑 ) ≠ ∅ → ∃! 𝑥 𝜑 )
3 aiotaexb ( ∃! 𝑥 𝜑 ↔ ( ℩' 𝑥 𝜑 ) ∈ V )
4 2 3 sylib ( ( ℩ 𝑥 𝜑 ) ≠ ∅ → ( ℩' 𝑥 𝜑 ) ∈ V )