Description: If the iota over a wff ph is not empty, the alternate iota over ph is a set. (Contributed by AV, 25-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | iotan0aiotaex | ⊢ ( ( ℩ 𝑥 𝜑 ) ≠ ∅ → ( ℩' 𝑥 𝜑 ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotanul | ⊢ ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ ) | |
2 | 1 | necon1ai | ⊢ ( ( ℩ 𝑥 𝜑 ) ≠ ∅ → ∃! 𝑥 𝜑 ) |
3 | aiotaexb | ⊢ ( ∃! 𝑥 𝜑 ↔ ( ℩' 𝑥 𝜑 ) ∈ V ) | |
4 | 2 3 | sylib | ⊢ ( ( ℩ 𝑥 𝜑 ) ≠ ∅ → ( ℩' 𝑥 𝜑 ) ∈ V ) |