Description: If the iota over a wff ph is not empty, the alternate iota over ph is a set. (Contributed by AV, 25-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotan0aiotaex | ⊢ ( ( ℩ 𝑥 𝜑 ) ≠ ∅ → ( ℩' 𝑥 𝜑 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotanul | ⊢ ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ ) | |
| 2 | 1 | necon1ai | ⊢ ( ( ℩ 𝑥 𝜑 ) ≠ ∅ → ∃! 𝑥 𝜑 ) |
| 3 | aiotaexb | ⊢ ( ∃! 𝑥 𝜑 ↔ ( ℩' 𝑥 𝜑 ) ∈ V ) | |
| 4 | 2 3 | sylib | ⊢ ( ( ℩ 𝑥 𝜑 ) ≠ ∅ → ( ℩' 𝑥 𝜑 ) ∈ V ) |