Metamath Proof Explorer


Theorem isanmbfmOLD

Description: Obsolete version of isanmbfm as of 13-Jan-2025. (Contributed by Thierry Arnoux, 30-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mbfmf.1
|- ( ph -> S e. U. ran sigAlgebra )
mbfmf.2
|- ( ph -> T e. U. ran sigAlgebra )
mbfmf.3
|- ( ph -> F e. ( S MblFnM T ) )
Assertion isanmbfmOLD
|- ( ph -> F e. U. ran MblFnM )

Proof

Step Hyp Ref Expression
1 mbfmf.1
 |-  ( ph -> S e. U. ran sigAlgebra )
2 mbfmf.2
 |-  ( ph -> T e. U. ran sigAlgebra )
3 mbfmf.3
 |-  ( ph -> F e. ( S MblFnM T ) )
4 ovssunirn
 |-  ( S MblFnM T ) C_ U. ran MblFnM
5 4 3 sselid
 |-  ( ph -> F e. U. ran MblFnM )