Metamath Proof Explorer


Theorem isanmbfmOLD

Description: Obsolete version of isanmbfm as of 13-Jan-2025. (Contributed by Thierry Arnoux, 30-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mbfmf.1 φ S ran sigAlgebra
mbfmf.2 φ T ran sigAlgebra
mbfmf.3 φ F S MblFn μ T
Assertion isanmbfmOLD φ F ran MblFn μ

Proof

Step Hyp Ref Expression
1 mbfmf.1 φ S ran sigAlgebra
2 mbfmf.2 φ T ran sigAlgebra
3 mbfmf.3 φ F S MblFn μ T
4 ovssunirn S MblFn μ T ran MblFn μ
5 4 3 sselid φ F ran MblFn μ