| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caufval |  |-  ( D e. ( *Met ` X ) -> ( Cau ` D ) = { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } ) | 
						
							| 2 | 1 | eleq2d |  |-  ( D e. ( *Met ` X ) -> ( F e. ( Cau ` D ) <-> F e. { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } ) ) | 
						
							| 3 |  | reseq1 |  |-  ( f = F -> ( f |` ( ZZ>= ` k ) ) = ( F |` ( ZZ>= ` k ) ) ) | 
						
							| 4 |  | eqidd |  |-  ( f = F -> ( ZZ>= ` k ) = ( ZZ>= ` k ) ) | 
						
							| 5 |  | fveq1 |  |-  ( f = F -> ( f ` k ) = ( F ` k ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( f = F -> ( ( f ` k ) ( ball ` D ) x ) = ( ( F ` k ) ( ball ` D ) x ) ) | 
						
							| 7 | 3 4 6 | feq123d |  |-  ( f = F -> ( ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) <-> ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( F ` k ) ( ball ` D ) x ) ) ) | 
						
							| 8 | 7 | rexbidv |  |-  ( f = F -> ( E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) <-> E. k e. ZZ ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( F ` k ) ( ball ` D ) x ) ) ) | 
						
							| 9 | 8 | ralbidv |  |-  ( f = F -> ( A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) <-> A. x e. RR+ E. k e. ZZ ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( F ` k ) ( ball ` D ) x ) ) ) | 
						
							| 10 | 9 | elrab |  |-  ( F e. { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } <-> ( F e. ( X ^pm CC ) /\ A. x e. RR+ E. k e. ZZ ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( F ` k ) ( ball ` D ) x ) ) ) | 
						
							| 11 | 2 10 | bitrdi |  |-  ( D e. ( *Met ` X ) -> ( F e. ( Cau ` D ) <-> ( F e. ( X ^pm CC ) /\ A. x e. RR+ E. k e. ZZ ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( F ` k ) ( ball ` D ) x ) ) ) ) |