| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-cau |  |-  Cau = ( d e. U. ran *Met |-> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) } ) | 
						
							| 2 |  | dmeq |  |-  ( d = D -> dom d = dom D ) | 
						
							| 3 | 2 | dmeqd |  |-  ( d = D -> dom dom d = dom dom D ) | 
						
							| 4 |  | xmetf |  |-  ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) | 
						
							| 5 | 4 | fdmd |  |-  ( D e. ( *Met ` X ) -> dom D = ( X X. X ) ) | 
						
							| 6 | 5 | dmeqd |  |-  ( D e. ( *Met ` X ) -> dom dom D = dom ( X X. X ) ) | 
						
							| 7 |  | dmxpid |  |-  dom ( X X. X ) = X | 
						
							| 8 | 6 7 | eqtrdi |  |-  ( D e. ( *Met ` X ) -> dom dom D = X ) | 
						
							| 9 | 3 8 | sylan9eqr |  |-  ( ( D e. ( *Met ` X ) /\ d = D ) -> dom dom d = X ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( D e. ( *Met ` X ) /\ d = D ) -> ( dom dom d ^pm CC ) = ( X ^pm CC ) ) | 
						
							| 11 |  | simpr |  |-  ( ( D e. ( *Met ` X ) /\ d = D ) -> d = D ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( D e. ( *Met ` X ) /\ d = D ) -> ( ball ` d ) = ( ball ` D ) ) | 
						
							| 13 | 12 | oveqd |  |-  ( ( D e. ( *Met ` X ) /\ d = D ) -> ( ( f ` k ) ( ball ` d ) x ) = ( ( f ` k ) ( ball ` D ) x ) ) | 
						
							| 14 | 13 | feq3d |  |-  ( ( D e. ( *Met ` X ) /\ d = D ) -> ( ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) <-> ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) ) ) | 
						
							| 15 | 14 | rexbidv |  |-  ( ( D e. ( *Met ` X ) /\ d = D ) -> ( E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) <-> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) ) ) | 
						
							| 16 | 15 | ralbidv |  |-  ( ( D e. ( *Met ` X ) /\ d = D ) -> ( A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) <-> A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) ) ) | 
						
							| 17 | 10 16 | rabeqbidv |  |-  ( ( D e. ( *Met ` X ) /\ d = D ) -> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) } = { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } ) | 
						
							| 18 |  | fvssunirn |  |-  ( *Met ` X ) C_ U. ran *Met | 
						
							| 19 | 18 | sseli |  |-  ( D e. ( *Met ` X ) -> D e. U. ran *Met ) | 
						
							| 20 |  | ovex |  |-  ( X ^pm CC ) e. _V | 
						
							| 21 | 20 | rabex |  |-  { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } e. _V | 
						
							| 22 | 21 | a1i |  |-  ( D e. ( *Met ` X ) -> { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } e. _V ) | 
						
							| 23 | 1 17 19 22 | fvmptd2 |  |-  ( D e. ( *Met ` X ) -> ( Cau ` D ) = { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } ) |