| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismgmALT.b |  |-  B = ( Base ` M ) | 
						
							| 2 |  | ismgmALT.o |  |-  .o. = ( +g ` M ) | 
						
							| 3 |  | fveq2 |  |-  ( m = M -> ( +g ` m ) = ( +g ` M ) ) | 
						
							| 4 |  | fveq2 |  |-  ( m = M -> ( Base ` m ) = ( Base ` M ) ) | 
						
							| 5 | 3 4 | breq12d |  |-  ( m = M -> ( ( +g ` m ) comLaw ( Base ` m ) <-> ( +g ` M ) comLaw ( Base ` M ) ) ) | 
						
							| 6 | 2 1 | breq12i |  |-  ( .o. comLaw B <-> ( +g ` M ) comLaw ( Base ` M ) ) | 
						
							| 7 | 5 6 | bitr4di |  |-  ( m = M -> ( ( +g ` m ) comLaw ( Base ` m ) <-> .o. comLaw B ) ) | 
						
							| 8 |  | df-cmgm2 |  |-  CMgmALT = { m e. MgmALT | ( +g ` m ) comLaw ( Base ` m ) } | 
						
							| 9 | 7 8 | elrab2 |  |-  ( M e. CMgmALT <-> ( M e. MgmALT /\ .o. comLaw B ) ) |