Step |
Hyp |
Ref |
Expression |
1 |
|
ismgmALT.b |
|- B = ( Base ` M ) |
2 |
|
ismgmALT.o |
|- .o. = ( +g ` M ) |
3 |
|
fveq2 |
|- ( m = M -> ( +g ` m ) = ( +g ` M ) ) |
4 |
3 2
|
eqtr4di |
|- ( m = M -> ( +g ` m ) = .o. ) |
5 |
|
fveq2 |
|- ( m = M -> ( Base ` m ) = ( Base ` M ) ) |
6 |
5 1
|
eqtr4di |
|- ( m = M -> ( Base ` m ) = B ) |
7 |
4 6
|
breq12d |
|- ( m = M -> ( ( +g ` m ) assLaw ( Base ` m ) <-> .o. assLaw B ) ) |
8 |
|
df-sgrp2 |
|- SGrpALT = { m e. MgmALT | ( +g ` m ) assLaw ( Base ` m ) } |
9 |
7 8
|
elrab2 |
|- ( M e. SGrpALT <-> ( M e. MgmALT /\ .o. assLaw B ) ) |