| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismgmALT.b |
|- B = ( Base ` M ) |
| 2 |
|
ismgmALT.o |
|- .o. = ( +g ` M ) |
| 3 |
|
fveq2 |
|- ( m = M -> ( +g ` m ) = ( +g ` M ) ) |
| 4 |
|
fveq2 |
|- ( m = M -> ( Base ` m ) = ( Base ` M ) ) |
| 5 |
3 4
|
breq12d |
|- ( m = M -> ( ( +g ` m ) comLaw ( Base ` m ) <-> ( +g ` M ) comLaw ( Base ` M ) ) ) |
| 6 |
2 1
|
breq12i |
|- ( .o. comLaw B <-> ( +g ` M ) comLaw ( Base ` M ) ) |
| 7 |
5 6
|
bitr4di |
|- ( m = M -> ( ( +g ` m ) comLaw ( Base ` m ) <-> .o. comLaw B ) ) |
| 8 |
|
df-csgrp2 |
|- CSGrpALT = { m e. SGrpALT | ( +g ` m ) comLaw ( Base ` m ) } |
| 9 |
7 8
|
elrab2 |
|- ( M e. CSGrpALT <-> ( M e. SGrpALT /\ .o. comLaw B ) ) |