Step |
Hyp |
Ref |
Expression |
1 |
|
ismgmALT.b |
|- B = ( Base ` M ) |
2 |
|
ismgmALT.o |
|- .o. = ( +g ` M ) |
3 |
|
fveq2 |
|- ( m = M -> ( +g ` m ) = ( +g ` M ) ) |
4 |
|
fveq2 |
|- ( m = M -> ( Base ` m ) = ( Base ` M ) ) |
5 |
3 4
|
breq12d |
|- ( m = M -> ( ( +g ` m ) comLaw ( Base ` m ) <-> ( +g ` M ) comLaw ( Base ` M ) ) ) |
6 |
2 1
|
breq12i |
|- ( .o. comLaw B <-> ( +g ` M ) comLaw ( Base ` M ) ) |
7 |
5 6
|
bitr4di |
|- ( m = M -> ( ( +g ` m ) comLaw ( Base ` m ) <-> .o. comLaw B ) ) |
8 |
|
df-csgrp2 |
|- CSGrpALT = { m e. SGrpALT | ( +g ` m ) comLaw ( Base ` m ) } |
9 |
7 8
|
elrab2 |
|- ( M e. CSGrpALT <-> ( M e. SGrpALT /\ .o. comLaw B ) ) |