Step |
Hyp |
Ref |
Expression |
1 |
|
ismgmALT.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
ismgmALT.o |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
3 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) |
5 |
3 4
|
breq12d |
⊢ ( 𝑚 = 𝑀 → ( ( +g ‘ 𝑚 ) comLaw ( Base ‘ 𝑚 ) ↔ ( +g ‘ 𝑀 ) comLaw ( Base ‘ 𝑀 ) ) ) |
6 |
2 1
|
breq12i |
⊢ ( ⚬ comLaw 𝐵 ↔ ( +g ‘ 𝑀 ) comLaw ( Base ‘ 𝑀 ) ) |
7 |
5 6
|
bitr4di |
⊢ ( 𝑚 = 𝑀 → ( ( +g ‘ 𝑚 ) comLaw ( Base ‘ 𝑚 ) ↔ ⚬ comLaw 𝐵 ) ) |
8 |
|
df-csgrp2 |
⊢ CSGrpALT = { 𝑚 ∈ SGrpALT ∣ ( +g ‘ 𝑚 ) comLaw ( Base ‘ 𝑚 ) } |
9 |
7 8
|
elrab2 |
⊢ ( 𝑀 ∈ CSGrpALT ↔ ( 𝑀 ∈ SGrpALT ∧ ⚬ comLaw 𝐵 ) ) |