| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismgmALT.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | ismgmALT.o | ⊢  ⚬   =  ( +g ‘ 𝑀 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑚  =  𝑀  →  ( +g ‘ 𝑚 )  =  ( +g ‘ 𝑀 ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑚  =  𝑀  →  ( Base ‘ 𝑚 )  =  ( Base ‘ 𝑀 ) ) | 
						
							| 5 | 3 4 | breq12d | ⊢ ( 𝑚  =  𝑀  →  ( ( +g ‘ 𝑚 )  comLaw  ( Base ‘ 𝑚 )  ↔  ( +g ‘ 𝑀 )  comLaw  ( Base ‘ 𝑀 ) ) ) | 
						
							| 6 | 2 1 | breq12i | ⊢ (  ⚬   comLaw  𝐵  ↔  ( +g ‘ 𝑀 )  comLaw  ( Base ‘ 𝑀 ) ) | 
						
							| 7 | 5 6 | bitr4di | ⊢ ( 𝑚  =  𝑀  →  ( ( +g ‘ 𝑚 )  comLaw  ( Base ‘ 𝑚 )  ↔   ⚬   comLaw  𝐵 ) ) | 
						
							| 8 |  | df-csgrp2 | ⊢ CSGrpALT  =  { 𝑚  ∈  SGrpALT  ∣  ( +g ‘ 𝑚 )  comLaw  ( Base ‘ 𝑚 ) } | 
						
							| 9 | 7 8 | elrab2 | ⊢ ( 𝑀  ∈  CSGrpALT  ↔  ( 𝑀  ∈  SGrpALT  ∧   ⚬   comLaw  𝐵 ) ) |