Metamath Proof Explorer


Theorem iscsgrpALT

Description: The predicate "is a commutative semigroup". (Contributed by AV, 20-Jan-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses ismgmALT.b 𝐵 = ( Base ‘ 𝑀 )
ismgmALT.o = ( +g𝑀 )
Assertion iscsgrpALT ( 𝑀 ∈ CSGrpALT ↔ ( 𝑀 ∈ SGrpALT ∧ comLaw 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ismgmALT.b 𝐵 = ( Base ‘ 𝑀 )
2 ismgmALT.o = ( +g𝑀 )
3 fveq2 ( 𝑚 = 𝑀 → ( +g𝑚 ) = ( +g𝑀 ) )
4 fveq2 ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) )
5 3 4 breq12d ( 𝑚 = 𝑀 → ( ( +g𝑚 ) comLaw ( Base ‘ 𝑚 ) ↔ ( +g𝑀 ) comLaw ( Base ‘ 𝑀 ) ) )
6 2 1 breq12i ( comLaw 𝐵 ↔ ( +g𝑀 ) comLaw ( Base ‘ 𝑀 ) )
7 5 6 bitr4di ( 𝑚 = 𝑀 → ( ( +g𝑚 ) comLaw ( Base ‘ 𝑚 ) ↔ comLaw 𝐵 ) )
8 df-csgrp2 CSGrpALT = { 𝑚 ∈ SGrpALT ∣ ( +g𝑚 ) comLaw ( Base ‘ 𝑚 ) }
9 7 8 elrab2 ( 𝑀 ∈ CSGrpALT ↔ ( 𝑀 ∈ SGrpALT ∧ comLaw 𝐵 ) )