| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 3 | 1 2 | ismgmALT | ⊢ ( 𝑀  ∈  MgmALT  →  ( 𝑀  ∈  MgmALT  ↔  ( +g ‘ 𝑀 )  clLaw  ( Base ‘ 𝑀 ) ) ) | 
						
							| 4 |  | fvex | ⊢ ( +g ‘ 𝑀 )  ∈  V | 
						
							| 5 |  | fvex | ⊢ ( Base ‘ 𝑀 )  ∈  V | 
						
							| 6 |  | iscllaw | ⊢ ( ( ( +g ‘ 𝑀 )  ∈  V  ∧  ( Base ‘ 𝑀 )  ∈  V )  →  ( ( +g ‘ 𝑀 )  clLaw  ( Base ‘ 𝑀 )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  ( Base ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( Base ‘ 𝑀 ) ) ) | 
						
							| 7 | 4 5 6 | mp2an | ⊢ ( ( +g ‘ 𝑀 )  clLaw  ( Base ‘ 𝑀 )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  ( Base ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 8 | 1 2 | ismgm | ⊢ ( 𝑀  ∈  MgmALT  →  ( 𝑀  ∈  Mgm  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  ( Base ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( Base ‘ 𝑀 ) ) ) | 
						
							| 9 | 8 | biimprd | ⊢ ( 𝑀  ∈  MgmALT  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  ( Base ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( Base ‘ 𝑀 )  →  𝑀  ∈  Mgm ) ) | 
						
							| 10 | 7 9 | biimtrid | ⊢ ( 𝑀  ∈  MgmALT  →  ( ( +g ‘ 𝑀 )  clLaw  ( Base ‘ 𝑀 )  →  𝑀  ∈  Mgm ) ) | 
						
							| 11 | 3 10 | sylbid | ⊢ ( 𝑀  ∈  MgmALT  →  ( 𝑀  ∈  MgmALT  →  𝑀  ∈  Mgm ) ) | 
						
							| 12 | 11 | pm2.43i | ⊢ ( 𝑀  ∈  MgmALT  →  𝑀  ∈  Mgm ) | 
						
							| 13 |  | mgmplusgiopALT | ⊢ ( 𝑀  ∈  Mgm  →  ( +g ‘ 𝑀 )  clLaw  ( Base ‘ 𝑀 ) ) | 
						
							| 14 | 1 2 | ismgmALT | ⊢ ( 𝑀  ∈  Mgm  →  ( 𝑀  ∈  MgmALT  ↔  ( +g ‘ 𝑀 )  clLaw  ( Base ‘ 𝑀 ) ) ) | 
						
							| 15 | 13 14 | mpbird | ⊢ ( 𝑀  ∈  Mgm  →  𝑀  ∈  MgmALT ) | 
						
							| 16 | 12 15 | impbii | ⊢ ( 𝑀  ∈  MgmALT  ↔  𝑀  ∈  Mgm ) |