Step |
Hyp |
Ref |
Expression |
1 |
|
mgm2mgm |
⊢ ( 𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm ) |
2 |
1
|
anbi1i |
⊢ ( ( 𝑀 ∈ MgmALT ∧ ( +g ‘ 𝑀 ) assLaw ( Base ‘ 𝑀 ) ) ↔ ( 𝑀 ∈ Mgm ∧ ( +g ‘ 𝑀 ) assLaw ( Base ‘ 𝑀 ) ) ) |
3 |
|
fvex |
⊢ ( +g ‘ 𝑀 ) ∈ V |
4 |
|
fvex |
⊢ ( Base ‘ 𝑀 ) ∈ V |
5 |
3 4
|
pm3.2i |
⊢ ( ( +g ‘ 𝑀 ) ∈ V ∧ ( Base ‘ 𝑀 ) ∈ V ) |
6 |
|
isasslaw |
⊢ ( ( ( +g ‘ 𝑀 ) ∈ V ∧ ( Base ‘ 𝑀 ) ∈ V ) → ( ( +g ‘ 𝑀 ) assLaw ( Base ‘ 𝑀 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) |
7 |
5 6
|
mp1i |
⊢ ( 𝑀 ∈ Mgm → ( ( +g ‘ 𝑀 ) assLaw ( Base ‘ 𝑀 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) |
8 |
7
|
pm5.32i |
⊢ ( ( 𝑀 ∈ Mgm ∧ ( +g ‘ 𝑀 ) assLaw ( Base ‘ 𝑀 ) ) ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) |
9 |
2 8
|
bitri |
⊢ ( ( 𝑀 ∈ MgmALT ∧ ( +g ‘ 𝑀 ) assLaw ( Base ‘ 𝑀 ) ) ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
12 |
10 11
|
issgrpALT |
⊢ ( 𝑀 ∈ SGrpALT ↔ ( 𝑀 ∈ MgmALT ∧ ( +g ‘ 𝑀 ) assLaw ( Base ‘ 𝑀 ) ) ) |
13 |
10 11
|
issgrp |
⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) |
14 |
9 12 13
|
3bitr4i |
⊢ ( 𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp ) |