Metamath Proof Explorer


Theorem sgrp2sgrp

Description: Equivalence of the two definitions of a semigroup. (Contributed by AV, 16-Jan-2020)

Ref Expression
Assertion sgrp2sgrp ( 𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp )

Proof

Step Hyp Ref Expression
1 mgm2mgm ( 𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm )
2 1 anbi1i ( ( 𝑀 ∈ MgmALT ∧ ( +g𝑀 ) assLaw ( Base ‘ 𝑀 ) ) ↔ ( 𝑀 ∈ Mgm ∧ ( +g𝑀 ) assLaw ( Base ‘ 𝑀 ) ) )
3 fvex ( +g𝑀 ) ∈ V
4 fvex ( Base ‘ 𝑀 ) ∈ V
5 3 4 pm3.2i ( ( +g𝑀 ) ∈ V ∧ ( Base ‘ 𝑀 ) ∈ V )
6 isasslaw ( ( ( +g𝑀 ) ∈ V ∧ ( Base ‘ 𝑀 ) ∈ V ) → ( ( +g𝑀 ) assLaw ( Base ‘ 𝑀 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g𝑀 ) 𝑦 ) ( +g𝑀 ) 𝑧 ) = ( 𝑥 ( +g𝑀 ) ( 𝑦 ( +g𝑀 ) 𝑧 ) ) ) )
7 5 6 mp1i ( 𝑀 ∈ Mgm → ( ( +g𝑀 ) assLaw ( Base ‘ 𝑀 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g𝑀 ) 𝑦 ) ( +g𝑀 ) 𝑧 ) = ( 𝑥 ( +g𝑀 ) ( 𝑦 ( +g𝑀 ) 𝑧 ) ) ) )
8 7 pm5.32i ( ( 𝑀 ∈ Mgm ∧ ( +g𝑀 ) assLaw ( Base ‘ 𝑀 ) ) ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g𝑀 ) 𝑦 ) ( +g𝑀 ) 𝑧 ) = ( 𝑥 ( +g𝑀 ) ( 𝑦 ( +g𝑀 ) 𝑧 ) ) ) )
9 2 8 bitri ( ( 𝑀 ∈ MgmALT ∧ ( +g𝑀 ) assLaw ( Base ‘ 𝑀 ) ) ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g𝑀 ) 𝑦 ) ( +g𝑀 ) 𝑧 ) = ( 𝑥 ( +g𝑀 ) ( 𝑦 ( +g𝑀 ) 𝑧 ) ) ) )
10 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
11 eqid ( +g𝑀 ) = ( +g𝑀 )
12 10 11 issgrpALT ( 𝑀 ∈ SGrpALT ↔ ( 𝑀 ∈ MgmALT ∧ ( +g𝑀 ) assLaw ( Base ‘ 𝑀 ) ) )
13 10 11 issgrp ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g𝑀 ) 𝑦 ) ( +g𝑀 ) 𝑧 ) = ( 𝑥 ( +g𝑀 ) ( 𝑦 ( +g𝑀 ) 𝑧 ) ) ) )
14 9 12 13 3bitr4i ( 𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp )